• Title/Summary/Keyword: Grapefruit seed extract

Search Result 93, Processing Time 0.027 seconds

Antimicrobial Effect of Phytochemicals to Listeria monocytogenes Isolated from Slaughterhouses

  • Kim, Hyeji;Oh, Hyemin;Lee, Heeyoung;Kim, Sejeong;Ha, Jimyeong;Lee, Jeeyeon;Choi, Yukyung;Lee, Yewon;Kim, Yujin;Yoon, Yohan;Lee, Soomin
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.4
    • /
    • pp.255-258
    • /
    • 2018
  • The objective of this study was to investigate the inhibitory effect of natural antimicrobials on Listeria monocytogenes isolated from Korean slaughterhouses. A mixture of 15 strains of L. monocytogenes at low (3 Log CFU/mL) or high (7 Log CFU/mL) concentration was exposed to various extracts (grapefruit seed extract, citrus fruit extract, ginger extract, pear extract, Japanese apricot concentrate, balloon flower extract, jujube extract, and omija extract) at $0.001-4.0{\mu}g/mL$. Ginger extract, pear extract, Japanese apricot concentrate, balloon flower extract, jujube extract, or omija extract showed no antimicrobial effects on high-concentration of L. monocytogenes (7 Log CFU/mL). However, grapefruit seed extract and citrus fruit extract showed antibacterial effects against L. monocytogenes at 3 and 7 Log CFU/mL with MBCs of 0.001 and $0.002{\mu}g/mL$, respectively. These results indicate that grapefruit seed extract and citrus fruits extract can be used to control L. monocytogenes as natural antimicrobials.

Antimicrobial Activity of ε-Polylysine Mixtures against Food-borne Pathogens (ε-Polylysine 혼합제제들의 식품부패균에 대한 항균효과)

  • 고은미;김병용
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.4
    • /
    • pp.705-710
    • /
    • 2004
  • This study was conducted to investigate the difference of antimicrobial activity between $\varepsilon$-polylysine/grapefruit seed extract mixture and $\varepsilon$-polylysine/glyceride mixture against food-borne pathogens. The minimum inhibitory concentration (MIC) of the $\varepsilon$-polylysine/grapefruit seed extract mixture was 100 times lower than that of the $\varepsilon$-polylysine/glyceride mixture. In case of the $\varepsilon$-polylysine/glyceride mixture the MIC of Bacillus cereus (0.1 $\mu$L/mL) and Pseudomonas aeruginosa (0.1 $\mu$L/mL) were lower than that of Escherishia coli (15 $\mu$L/mL). When rices were cooked with the $\varepsilon$-polylysine/glyceride mixture the number of total microbial cell was decreased during storage at 2$0^{\circ}C$ as concentration of the $\varepsilon$-polylysine/glyceride mixture increased. The antimicrobial activity was the highest against Escherishia coli as the concentration of the $\varepsilon$-polylysine/glyceride mixture increased. Sensory terms such as taste, flavor and texture were not significantly different in cooked rices prepared with 0.5% $\varepsilon$-polylysine/glyceride mixture, but there was significantly different in cooked rices prepared with 1% (p<0.05) in the overall acceptability, indicating that the cooked rice with 0.5% $\varepsilon$-polylysine/glyceride mixture was recommended.

Effects of Alkaline Ionic Water and Grapefruit Seed Extract Added Immersion Solutions on Storage Characteristics of Mulberry Leaf Soybean Curd (침지액에 알칼리성 이온수 및 자몽종자추출물 첨가가 뽕잎두부의 저장성에 미치는 효과)

  • Han, Myung-Ryun;Kim, Myung-Hwan
    • Applied Biological Chemistry
    • /
    • v.49 no.2
    • /
    • pp.108-113
    • /
    • 2006
  • This study was conducted to analyze the acidity and turbidity changes of immersion solutions as well as changes in aerobic bacteria, E. coli, anaerobic bacteria, yeast and mold counts of mulberry leaf soybean curds during storages at $4^{\circ}C$ and $25^{\circ}C$ in different immersion solutions such as distilled water, grapefruit seed extract (300 ppm) and alkaline ionic water. The acidities of immersion solutions of distilled water, grapefruit seed extract and alkaline ionic water after 18 days of storage at $4^{\circ}C$ were 0.021, 0.008 and 0.002%, respectively. After 5 days of storage at $25^{\circ}C$ were 0.042, 0.029 and 0.009%, respectively. The turbidities of the above mentioned immersion solutions were 0.50, 0.29 and 0.21 after 18 days of storage at $4^{\circ}C$ and 0.38, 0.34 and 0.27, respectively, after 5 days of storage at $25^{\circ}C$. The acidity and turbidity changes of immersion solutions were sensitive to storage temperatures. The aerobic bacteria count of mulberry leaf soybean curds after 18 days of storage at $4^{\circ}C$ was still below $10^7\;CFU/g$, the beginning point of soybean curd putrefaction; in contrast, this value was reached within one day in distilled water at $25^{\circ}C$ and between 2 and 3 days in alkaline ionic water. Grapefruit seed extract and alkaline ionic water had a better preservative effect at $4^{\circ}C$ than at $25^{\circ}C$ storage temperature.

Effect of Washing Conditions in Salted Chinese Cabbage on the Quality of Kimchi (절임 배추의 세척 조건에 따른 김치의 숙성중 품질 변화)

  • 박우포;박규동;김종현;조용범;이미정
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.1
    • /
    • pp.30-34
    • /
    • 2000
  • Salted Chinese cabbage was washed in 1,000 ppm solutions of grapefruit seed extract(GFSE) or citric acid, and used to make kimchi for the retentio of quality characteristics during fermentation at $10^{\circ}C$. Kimchi treated with GFSE or citric acid showed a retarded increase in titratable acidity and decrease in pH and reducing sugar content. Total microbial count and lactic acid bacteria of GFSE treated kimchi were about 1.1 log(CFU/g) lower than those of control and citric acid treated kimchi after making, but the difference was gradually reduced during fermentation.

  • PDF

Effect of Antimicrobial Dipping and Packaging on the Keeping Quality of Cucumbers (식물성 항균소재를 이용한 침지 및 포장처리가 오이의 선도에 미치는 영향)

  • 정순경;조성환
    • Food Science and Preservation
    • /
    • v.7 no.1
    • /
    • pp.8-11
    • /
    • 2000
  • The antimicrobial extracts of rheum palmatum and coptis chinensis root as well as grapefruit seed extract(GFSE) were applied to dipping treatment for keeping qualities of cucumbers, respectively, which were then packed in low density polyethylene(LDPE) films incorporated with 1 % antimicrobial extracts and stored $10^{\circ}C$. Dipping and packaging in the antimicrobial agents suppressed the growth of putrefactive microorgani는 and the decay ratio of cucumbers. In addition, the loss ratio of ascortic acid content and their weight was decreased during the sotrage of cucumbers. Consequently, the combined method of dippinf and packaging in antimicrobial agents turned out to be superior to dipping treatment or film-packaging in the view point of decay ratio and the keeping qualities of cucumbers.

  • PDF

Anti-Biofilm Activity of Cell-Free Supernatant of Saccharomyces cerevisiae against Staphylococcus aureus

  • Kim, Yeon Jin;Yu, Hwan Hee;Park, Yeong Jin;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1854-1861
    • /
    • 2020
  • Staphylococcus aureus is one of the most common microorganisms and causes foodborne diseases. In particular, biofilm-forming S. aureus is more resistant to antimicrobial agents and sanitizing treatments than planktonic cells. Therefore, this study aimed to investigate the anti-biofilm effects of cell-free supernatant (CFS) of Saccharomyces cerevisiae isolated from cucumber jangajji compared to grapefruit seed extract (GSE). CFS and GSE inhibited and degraded S. aureus biofilms. The adhesion ability, auto-aggregation, and exopolysaccharide production of CFS-treated S. aureus, compared to those of the control, were significantly decreased. Moreover, biofilm-related gene expression was altered upon CFS treatment. Scanning electron microscopy images confirmed that CFS exerted anti-biofilm effects against S. aureus. Therefore, these results suggest that S. cerevisiae CFS has anti-biofilm potential against S. aureus strains.

Effects of Grapefruit Seed Extract on Oxidative Stability and Quality Properties of Cured Chicken Breast

  • Kang, Su-Tae;Son, Hee-Kyoung;Lee, Hyun-Joo;Choi, Jung-Seok;Choi, Yang-Il;Lee, Jae-Joon
    • Food Science of Animal Resources
    • /
    • v.37 no.3
    • /
    • pp.429-439
    • /
    • 2017
  • This study investigated the antioxidative and functional effects of a curing agent containing grapefruit seed extract (GSE) on the quality and storage characteristics of chicken breast. The total polyphenol and total flavonoid contents of GSE were 45.06 mg/g and 36.06 mg/g, respectively. The $IC_{50}$ value of 2,2-diphenyl-1-picrylhydrazyl hydroxyl scavenging of GSE was $333.33{\mu}g/mL$. The chicken breast comprised six groups: no-treatment (N), 0.2% ascorbic acid + 70 ppm sodium nitrite (C), 0.05% GSE (G0.05), 0.1% GSE (G0.1), 0.3% GSE (G0.3), and 0.5% GSE (G0.5). The pH and cooking loss of cured chicken breast decreased with increasing GSE levels, and the water holding capacity increased with increasing GSE levels. The hardness and chewiness of GSE-treated chicken breast were higher than those of N and C. Hunter's L and a color values increased significantly after GSE addition. Moreover, 0.1% GSE (G0.1) increased the flavor and total acceptability scores. The 2-thiobarbituric acid and volatile basic nitrogen values of the 0.5% GSE group decreased significantly compared with those of C group. Total microbial counts of GSE-treated chicken breast were higher than those of C, but that lower than those of N. Adding GSE to chicken breast delayed lipid peroxidation and had antimicrobial effects during cold storage. GSE improved shelf life and palatability; therefore, it could be used as a natural antioxidant and functional curing agent ingredient in meat products.

Preparation of Gelatin Film Containing Grapefruit Seed Extract and Its Antimicrobial Effect (자몽종자 추출물을 함유한 Gelatin Film의 항균 효과)

  • Lim, Geum-Ok;Hong, Youn-Hee;Song, Kyung-Bin
    • Food Science and Preservation
    • /
    • v.16 no.1
    • /
    • pp.134-137
    • /
    • 2009
  • The gelatin film containing grapefruit seed extract (GSE) was prepared by incorporating different amounts (0, 0.02, 0.05, 0.08, 0.1%) of GSE into the film. The tensile strength (TS) of the film increased by the addition of GSE, and water vapor permeability (WVP) of the film decreased. In particular, the gelatin film containing 0.1% GSE had a TS of 10.28 MPa, while the control had 8.68 MPa. WVP of the film containing 0.1% GSE decreased to 2.18 ng m/m2 s Pa, compared to 2.48 ng $m/m^{2}s$ Pa of the control. In addition, incorporation of 0.1% GSE to the gelatin film decreased the populations of Escherichia coli O157:H7 and Listeria monocytogenes by 2.67 and 3.15 log CFU/g, respectively, compared to the control. These results suggest that as a packaging material, gelatin film containing GSE can have antimicrobial activity against pathogenic microorganisms in foods.

Kimchi Quality Affected by the Addition of Grapefruit Seed Extract Powder (자몽종자추출물 분말제재를 첨가한 김치의 저장성 연장)

  • 박우포;장덕규
    • Food Science and Preservation
    • /
    • v.10 no.3
    • /
    • pp.288-292
    • /
    • 2003
  • Grapefruit seed extract powder (GFSEP), which was made with grapefruit seed extract and calcium carbonate, was investigated to retard the fermentation rate. The mixing ratios of GFSEP to salted Chinese cabbage were 0.1, 0.3 and 0.5%. Quality characteristics of kimchi such as pH, titratable acidity, reducing sugar content and microbial loads were measured during fermentation at 10$^{\circ}C$. pH and reducing sugar content of control and kimchi sample with 0.1% GFSEP showed decreases until 10 days, and then attained to stabilized levels. Kimchi samples with 0.3% and 0.5% GFSEP maintained a higher pH and reducing sugar content, while microbial load was lower than others. Based on the pH and tit ratable acidity, kimchi samples with GFSEP prolong the shelf life about 3~10 days.

Anti-Biofilm Activity of Grapefruit Seed Extract against Staphylococcus aureus and Escherichia coli

  • Song, Ye Ji;Yu, Hwan Hee;Kim, Yeon Jin;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1177-1183
    • /
    • 2019
  • Grapefruit seed extract (GSE) is a safe and effective preservative that is used widely in the food industry. However, there are few studies addressing the anti-biofilm effect of GSE. In this study, the anti-biofilm effect of GSE was investigated against biofilm-forming strains of Staphylococcus aureus and Escherichia coli. The GSE minimum inhibitory concentration (MIC) for S. aureus and E. coli were $25{\mu}g/ml$ and $250{\mu}g/ml$, respectively. To investigate biofilm inhibition and degradation effect, crystal violet assay and stainless steel were used. Biofilm formation rates of four strains (S. aureus 7, S. aureus 8, E. coli ATCC 25922, and E. coli O157:H4 FRIK 125) were 55.8%, 70.2%, 55.4%, and 20.6% at $1/2{\times}MIC$ of GSE, respectively. The degradation effect of GSE on biofilms attached to stainless steel coupons was observed (${\geq}1$ log CFU/coupon) after exposure to concentrations above the MIC for all strains and $1/2{\times}MIC$ for S. aureus 7. In addition, the specific mechanisms of this anti-biofilm effect were investigated by evaluating hydrophobicity, auto-aggregation, exopolysaccharide (EPS) production rate, and motility. Significant changes in EPS production rate and motility were observed in both S. aureus and E. coli in the presence of GSE, while changes in hydrophobicity were observed only in E. coli. No relationship was seen between auto-aggregation and biofilm formation. Therefore, our results suggest that GSE might be used as an anti-biofilm agent that is effective against S. aureus and E. coli.