• Title/Summary/Keyword: Granulosa-luteal cells

Search Result 24, Processing Time 0.024 seconds

Apoptosis and Peripheral Benzodiazepin Receptor (PBR) Expression in Human Granulosa-Luteal Cells by GnRH-agonist (GnRH-agonist에 의한 인간 과립-황체화 세포의 세포사멸과 PBR 단백질의 발현)

  • Kim, Sei-Kwang;Youm, Yun-Hee;Yoon, Jeong-Mi;Bai, Sang-Wook;Yang, Hyun-Won;Cho, Dong-Jae;Yoon, Yong-Dal;Song, Chan-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.2
    • /
    • pp.83-94
    • /
    • 2004
  • Objective: To investigate whether GnRH-agonist (GnRH-Ag) using in IVF-ET affects apoptosis of human granulosa-luteal cells and expression of peripheral benzodiazepine receptor (PBR) protein involved in the apoptosis of the cells. Methods: Granulosa-luteal cells obtained during oocyte retrieval were cultured and treated with $10^{-5}M$ GnRH-Ag. Apoptosis of the cells by the treatment was confirmed using DNA fragmentation analysis 24 h after culture. The presence of PBR protein within the cells was examined by immunofluorescence staining and the expression of the protein was analyzed by Western blotting. In addition, it was measured for progesterone and nitric oxide (NO) produced by granulosa-luteal cells after GnRH-Ag treatment. To evaluate the relationship between NO production and PBR expression, sodium nitroprusside (SNP) as a NO donor was added in media and investigated the expression of PBR protein by Western blotting. Results: Apoptosis increased in the granulosa-luteal cells 24 h after GnRH-Ag treatment, whereas the expression of PBR protein significantly decreased. Furthermore, the production of progesterone and nitric oxide (NO) by the cells significantly fell from 12 h after the treatment. In the results of Western blotting after SNP treatment, the expression of PBR protein increased in the treatment with SNP alone to the granulosa-luteal cells, but was suppressed in the treatment with GnRH-Ag and SNP. Additionally, the staining result of PBR protein in the cells showed the even distribution of it through the cell. Conclusion: These results demonstrate that GnRH-Ag treatment induces apoptosis, decreasing expression of PBR protein and NO production in human granulosa-luteal cells. The present study suggests that one of the apoptosis mechanism of human granulosa-luteal cells by GnRH-Ag might be a signal transduction pathway via NO and PBR.

Analysis of protein-protein interaction network based on transcriptome profiling of ovine granulosa cells identifies candidate genes in cyclic recruitment of ovarian follicles

  • Talebi, Reza;Ahmadi, Ahmad;Afraz, Fazlollah
    • Journal of Animal Science and Technology
    • /
    • v.60 no.6
    • /
    • pp.11.1-11.7
    • /
    • 2018
  • After pubertal, cohort of small antral follicles enters to gonadotrophin-sensitive development, called recruited follicles. This study was aimed to identify candidate genes in follicular cyclic recruitment via analysis of protein-protein interaction (PPI) network. Differentially expressed genes (DEGs) in ovine granulosa cells of small antral follicles between follicular and luteal phases were accumulated among gene/protein symbols of the Ensembl annotation. Following directed graphs, PTPN6 and FYN have the highest indegree and outdegree, respectively. Since, these hubs being up-regulated in ovine granulosa cells of small antral follicles during the follicular phase, it represents an accumulation of blood immune cells in follicular phase in comparison with luteal phase. By contrast, the up-regulated hubs in the luteal phase including CDK1, INSRR and TOP2A which stimulated DNA replication and proliferation of granulosa cells, they known as candidate genes of the cyclic recruitment.

Determination of Apoptosisin Granulosa-Luteal Cells Obtained from Hyperstimulated Human Ovaries (과배란 유도시 인간 난소로부터 얻어진 과립-황체화 세포의 자연세포사 검정)

  • 양현원
    • Development and Reproduction
    • /
    • v.1 no.1
    • /
    • pp.79-89
    • /
    • 1997
  • Recent studies have demonstrated that apoptotic cell death plays an important role in the mechanism underlying follicular atresia and luteolysis. However, the mechanisms responsible for initiating these processes have not been elucidated. In in vitro fertilization (IVF) programs, it is highly possible that continuous and repeated administration of FSH/hMG and GnRH agonists for the usage of ovarian hyperstimulation may induce apoptotic death of granulosa cells leading to atresia in the human ovarian follicles. The present study was performed to investigate whether FSH/hMG and GnRh agonists used for a longer period in controlled ovarian hyperstimulation has any effect on the apoptosis of granulosa-luteal (GL) cells obtained from hyperstimulated ovaries. To examine apoptotic cell death in the GL cells, cells were stained with acridie orange followed by observed in some of GL cells. Similar but distinct staining of apoptotic GL cells was observed when the cells were examined by using in situ TUNEL method. The healthy-looking cells with normal nuclear morphology were not stained, whereas cells with pyknotic nuclei or with apoptotic nuclei were intensively stained. After examining the ultrastructural features of GL cells by TEM, it was confirmed that the majority of cells seemed to have normal nuclei while GL cells undergoing apoptotic cel death were rarely found. The DNA extracted from GL cells showed a typical pattern of fragmentation following DNA electrophoretic analysis. We have confirmed that the apoptosis occurs in granulosa-luteal cells obtained from hyperstimulated ovaries. Technically, in situ apoptosis detection method is simple and reproducible and is well suited to identify the quality of oocytes retrieved from hyperstimulated ovaries.

  • PDF

Expression of Ski in the Corpus Luteum in the Rat Ovary

  • Kim, Hyun;Matsuwaki, Takashi;Yamanouchi, Keitaro;Nishihara, Masugi;Yang, Boh-Suk;Ko, Yeoung-Gyu;Kim, Sung-Woo
    • Journal of Embryo Transfer
    • /
    • v.26 no.4
    • /
    • pp.229-235
    • /
    • 2011
  • Sloan-Kettering virus gene product of a cellular protooncogene c-Ski is an unique nuclear pro-oncoprotein and belongs to the Ski/Sno proto-oncogene family. Ski plays multiple roles in a variety of cell types, it can induce both oncogenic transformation and terminal muscle differentiation when expressed at high levels. Ski protein is implicated in proliferation/differentiation in a variety of cells. The alternative fate of granulosa cells other than apoptosis is to differentiate to luteal cells, however, it is unknown whether Ski is expressed and has a role in granulosa cells undergoing luteinization. Thus, the aim of this study was, by means of immunohistochemical methods, to locate Ski protein in the rat ovaries during ovulation and corpora lutea (CL) formation to predict the possible involvement of Ski in luteinization. In addition, we performed to examine whether the initiation of luteinization with luteinizing hormone (LH) directly regulates expression of Ski in the luteinized granulosa and luteal cells after ovulation by in vivo models. In order to examine the expression pattern of Ski protein along with the progress of luteinization, follicular growth was induced by administration of equine chorionic gonadtropin to immature female rat, and luteinization was induced by human chorionic gonadtropin treatment to mimic luteinizing hormone (LH) surge. While no Ski-positive granulosa cells were present in preovulatory follicle, Ski protein expression was induced in response to LH surge, and was maintained after the formation of corpus luteum (CL). These results indicate that Ski is profoundly expressed in the luteinized granulosa cells and luteal cells of CL during luteinization, and suggest that Ski may play a role in luteinization of granulosa cells.

Induction of Ski Protein Expression upon Luteinization in Rat Granulosa Cells

  • Kim, Hyun;Matsuwaki, Takashi;Yamanouchi, Keitaro;Nishihara, Masugi;Yang, Boh-Suk;Ko, Yeoung-Gyu;Kim, Sung-Woo
    • Journal of Embryo Transfer
    • /
    • v.26 no.4
    • /
    • pp.237-244
    • /
    • 2011
  • Ski protein is implicated in proliferation/differentiation in a variety of cells. We had previously reported that Ski protein is present in granulosa cells of atretic follicles, but not in preovulatory follicles, suggesting that Ski has a role in apoptosis of granulosa cells. The alternative fate of granulosa cells other than apoptosis is to differentiate to luteal cells, however, it is unknown whether Ski is expressed and has a role in granulosa cells undergoing luteinization. Thus, the aim of the present study was to examine whether the initiation of luteinization with luteinizing hormone (LH) directly regulates expression of Ski in the luteinized granulosa and luteal cells after ovulation by in vitro models. RT-PCR and real time PCR analysis respectively revealed that LH had no effect on c-Ski mRNA expression in the cultured granulosa cells regardless of LH treatment. Though Ski protein is absent in granulosa cells of preovulatory follicle, its mRNA (c-Ski) was expressed and the level was unchanged even after LH surge. Taken together, these results demonstrated that Ski protein expression is induced in granulosa cells upon luteinization, and suggested that its expression is regulated post-transcriptionally. Moreover, expression of mRNA of Arkadia, an E3 ubiquitin ligases, in luteinizing granulosa cells in vivo was assessed by realtime-PCR. The levels of Arkadia mRNA expression were unchanged during follicular growth and postovulatory luteinization. These findings suggest that Ski protein level may be regulated during luteinization at translational and/or post-translational level but not by Arkadia.

Effects of GnRH Agonist Used for Ovarian Hyperstimulation in Human IVF-ET on the Apoptosis of Preovulatory Follicular Cells (인간 체외수정 및 배아이식에 있어서 과배란 유도 과정에 사용한 GnRH Agonist가 배란 전 난포내 과립 세포의 세포자연사에 미치는 영향)

  • Yang, Hyun-Won;Kwon, Hyuck-Chan;Hwang, Kyung-Joo;Park, Jong-Min;Oh, Kie-Suk;Yoon, Yong-Dal
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.1
    • /
    • pp.55-65
    • /
    • 1999
  • There have been many reports to date regarding the role of GnRH as a local regulatory factor of ovarian function as studies of human and rat ovaries revealed GnRH and its receptor. In recent studies it has been shown that GnRH directly causes apoptosis in the granulosa cells of the rat ovary, and such results leads to the suggestion that the use of GnRH agonist for more stable long term ovarian hyperstimulation in human IVF-ET programs causes granulosa cell apoptosis which may lead to follicular atresia. Therefore this study attempts to determine if granulosa-luteal cell apoptosis occurs in patients during IVF-ET programs in which GnRH agonist is employed for ovarian hyperstimulation. The quality of oocyte-cumulus complexes obtained during ovum pickup procedures were assessed morphologically and then the fertilization rate and developmental rate was determined. Apoptotic cells among the granulosa-luteal cells obtained during the same procedure were observed after staining with Hematoxylin-eosin. The fragmentation degree of DNA extracted from granulosa-luteal cells was determined and comparatively analyzed. There was no difference in the average age of the patients, the number of oocytes retrieved, and fertilization and developmental rates between the FSH/hMG group and GnRH-long group. There was also no difference in the apoptosis rate and pyknosis rate in the granulosa-luteal cells between the two groups. However, when the oocyte-cumulus complexes were morphoogically divided into the healthy group and atretic group without regard for the method of hyperstimulation, the results showed that the number of oocytes obtained averaged $11.09{\pm}8.75\;and\;10.33{\pm}4.53$ per cycle, respectively, showing no significant difference, but the fertilization rate (77.05%, 56.99%, respectively, p<0.01) and developmental rate (65.96%, 41.51%, respectively, p<0.01) was significantly increased in the healthy group when compared to the atretic group. The degree of apoptosis in the granulosa-luteal cells showed that in the healthy group it was 2.25% which was not significantly different from the atretic group (2.77%), but the pyknosis rate in the atretic group (27.81%) was significantly higher compared to the healthy group (11.35%, p<0.01). The quantity of DNA fragmentation in the FSH/hMG group was 32.22%, while in the GnRH-long group it was 34.27%, showing no significant difference. On the other hand the degree of DNA fragmentation was 39.05% and 11.83% in the healthy group and atretic group, respectively, showing significantly higher increase in the atretic group (p<0.01). The above results suggest that death of granulosa-luteal cells according to the state of the oocyte-cumulus complex is more related to pyknosis rather than apoptosis. Also, the GnRH agonist used in ovarian hyperstimulation does not seem to directly affect the apoptosis of retrieved oocytes and granulosa-luteal cells, and which is thought to be due to the suppression of the apoptogenic effect of GnRH agonist as a result of the high doses of FSH administered.

  • PDF

The Endocrine Control of Corpus Luteum Function (황체기능의 내분비 제어)

  • 성환후
    • Korean Journal of Animal Reproduction
    • /
    • v.19 no.4
    • /
    • pp.307-322
    • /
    • 1996
  • The corpus luteum (CL) is formed by the action of a surge of luteinizing hormone (LH) on the pre-ovulatory follicle. Luteal cells derived from granulosa and theca interna cells continue to secrete progesterone for about two weeks. LH in domestic animals is essential for the normal secretion of progesterone at all stages of the luteal phase. For this process in the rodents, 20$\alpha$-hydroxysteroid dehydrogenase (20$\alpha$-HSD) is indispensable. 20$\alpha$-HSD is an enzyme to be a biologically inactive steroid. This enzyme plays a critical role in the regulation of the rat luteal function and reported to be present in steroid-producing tissues such as the testis and adrenal gland. We have purified 20$\alpha$-HSD and found two distinct 20$\alpha$-HSD molecules (HSD-1 and HSD-2). Their molecular weights are both estimated to be 33kd.The amino acid compositions of HSD-1 and HSD-2 are mostly similar, but there is a slight difference in the content of lysine. We demonstrated that 1) CL of previous generations contribute more to whole ovarian 20$\alpha$-HSD activity, 2) newly formed corpora lutea contain only 20$\alpha$-HSD-1 activity, and 3) old CL express activities of each HSD isozyme as shown in the luteal tissue of cycling rats on the day of diestrus where only degenerating old CL exist. The increase in 20$\alpha$-HSD activity identified seems to be related to the increase in the numbers of 20$\alpha$-HSD-positive cells. Interestingly, 20$\alpha$-HSD-1 activities were strongly found in the follicle fluids and theca interna cells by immunohistochemical study. Thus, the activity of 20$\alpha$-HSD may be related to a survival mechanism of those luteal cells and follicles remaining in the ovaries. Luteal cells arise from two sources. The small luteal cells are all of theca cell origin, while the large luteal cells are mainly of granulosa cell origin. CL of Korean Native Cattle, as those of other animal species, contains two morphologycally and functionally distinct luteal cell populations, such as small and large luteal cells as well as nonluteal cells. In all reproductive states except in the late luteal phase, the bovine CL also contained more small luteal cells than large luteal cells. Luteal tissue secretes a variety of growth factors (proteins) and the pattern of secretion changes during all stages of the luteal phase. These growth factors could be important in regulating the function of the bovine corpus luteum and may act in a potential endocrine autocrine and paracrine mechanisms. Therefore, further work has to be done to elucidate the role of growth factors in the ovary, especially in the corpus luterum. Interest should be focussed on interaction of these growth factors in the regulation of luteal cell and the localization of cytokine synthesis in differnet luteal cells.

  • PDF

Change of Protein Patterns in Granulosa Cells and Corpus Luteum during the Ovarian Cycle in Cows (소의 난소주기 동안 과립막세포와 황체조직에서 단백질 패턴의 변화)

  • Song, Eun-Ji;Lee, Yong-Seung;Lee, Sang-Hee;Yoo, Han-Jun;Park, Joung-Jun;Cheong, Hee-Tae;Yang, Boo-Keun;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.37 no.3
    • /
    • pp.149-154
    • /
    • 2013
  • The aim of this study was to evaluate the changes of protein patterns in granulosa cells and corpus luteum in ovaries during the estrus cycle in cows. The estrus cycle was devided into five steps of follicular, ovulatory, early-luteal, mid-luteal and late-luteal phases. In results, 61 spots of total 85 spots were repeated on follicular phase and 51 spots of total 114 spots were repeated on ovulatory phase. The 40 spots of total 129 spots were repeated on early-luteal phase and 49 spots of total 104 spots were repeated on mid-luteal phase. Also 41 spots of total 60 spots were repeated on late-luteal phase. On the other hands, the 16 spots were indicated difference in follicular phase and ovulation phase had a difference 10 spots. It was showed difference No. 103 spot in ovulation phase, No. 135 spot in early-luteal phase and No. 175 and 176 spots in mid-luteal phase. Also, the 11 spots were expressed specifically in mid-luteal phase and No. 178 and 179 spots were difference of expression in late-luteal phase. We confirmed that there were 7 spots for ovulation, 4 spots for luteinization and 2 spots for luteolysis. Spot No. 89~93 in ovulation phase were transferrin, and spot No.94~98 were HSP60. Spot No. 103 was Dusty PK, spot No. 135 was OGDC-E2, and spot No. 175 and 176 were Rab GDI beta from luteinization. Spot No. 178 and 179 in luteolysis were vimentin. This results suggest that will be help to basic data about infertility.

Involvement of Ski Protein Expression in Luteinization in Rat Granulosa Cells

  • Kim, Hyun;Matsuwaki, Takashi;Yamanouchi, Keitaro;Nighihara, Masugi;Kim, Sung-Woo;Ko, Yeoung-Gyu;Yang, Boh-Suk
    • Reproductive and Developmental Biology
    • /
    • v.35 no.3
    • /
    • pp.355-361
    • /
    • 2011
  • Ski protein is implicated in proliferation/differentiation in a variety of cells. We had previously reported that Ski protein is present in granulosa cells of atretic follicles, but not in preovulatory follicles, suggesting that Ski has a role in apoptosis of granulosa cells. The alternative fate of granulosa cells other than apoptosis is to differentiate to luteal cells, however, it is unknown whether Ski is expressed and has a role in granulosa cells undergoing luteinization. Thus, the aim of the present study was to locate Ski protein in the rat ovary during luteinization to predict the possible role of Ski. In order to examine the expression pattern of Ski protein along with the progress of luteinization, follicular growth was induced by administration of equine chorionic gonadotropin to immature female rat, and luteinization was induced by human chorionic gonadotropin treatment to mimic luteinizing hormone (LH) surge. While no Ski-positive granulosa cells were present in preovulatory follicle, Ski protein expression was induced in response to LH surge, and was maintained after the formation of corpus luteum (CL). Though Ski protein is absent in granulosa cells of preovulatory follicle, its mRNA (c-ski) was expressed and the level was unchanged even after LH surge. Taken together, these results demonstrated that Ski protein expression is induced in granulosa cells upon luteinization, and suggested that its expression is regulated post-transcriptionally.