• 제목/요약/키워드: Granulocyte macrophage colony stimulating factor (GM-CSF)

검색결과 111건 처리시간 0.03초

Effects of Red Ginseng-Ejung-tang Water Extract on Cytokine Production in LPS-induced Mouse Macrophages

  • Park, Wansu
    • 대한한의학회지
    • /
    • 제33권4호
    • /
    • pp.42-49
    • /
    • 2012
  • Objectives: The purpose of this study was to investigate effects of Red Ginseng-Ejung-tang Water Extract (ER) on cytokine production in RAW 264.7 mouse macrophages stimulated by lipopolysaccharide (LPS). Methods: Levels of various cytokines such as interleukin (IL)-6, IL-10, IL-2, IL-12p70, vascular endothelial growth factor (VEGF), monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-2, keratinocyte-derived chemokine (KC), tumor necrosis factor (TNF)-alpha, granulocyte macrophage colony-stimulating factor (GM-CSF) were measured by high-throughput multiplex bead array cytokine assay based on xMAP (multi-analyte profiling beads) technology. Results: ER significantly decreased levels of IL-6, IL-10, IL-2, IL-12p70, VEGF, and MCP-1 for 24 hrs incubation at the concentrations of 25, 50, and $100{\mu}g/mL$ in LPS-induced RAW 264.7 cells (P < 0.05). But ER did not exert significant effects on production of MIP-2, KC, TNF-${\alpha}$, and GM-CSF in LPS-induced RAW 264.7 cells. Conclusions: These results suggest that ER has an anti-inflammatory property related with its inhibition of cytokine production in LPS-induced macrophages.

식물세포배양에서 당과 식물세포의 농도가 hGM-CSF의 생산에 미치는 영향 (The Effects of Sucrose and Inoculum Size on the Production of hGM-CSF from Plant Cell Culture)

  • 이재화;김난선;권태호;박승문;장용석
    • KSBB Journal
    • /
    • 제16권4호
    • /
    • pp.376-380
    • /
    • 2001
  • 본 연구에서는 hGM-CSF 유전자가 도입된 형질전한 담배의 callus를 현탁배양하여 hGM-CSF를 생산할 때에 배양 초기의 세포접종농도와 sucrose의 농도가 hGM-CSF의 생산에 미치는 영향을 확인하고자 하였다. 20, 50, 80, 110 g/L의 초기세포접종농도와 30, 60, 90 g/L의 당의 농도를 서로 조합하여 배양한 결과 모든 처리구에서의 hGM-CSF 생산량은 배양 7일 이후부터 급격하게 감소하였으며, 모든 세포접종농도에서 당의 농도가 높아질수록 hGM-CSF의 생산이 촉진되는 결과를 얻었다. 또한, 서로 다른 당과 세포접종농도의 조합에 따라서 hGM-CSF의 생산량은 현저한 차이를 보여 식물세포 배양을 이용한 외래단백질의 생산에는 당의 농도와 배양초기의 세포접종농도에 크게 영향 받음을 확인하였으며, 최대의 hGM-CSF 생산을 보인 조건은 90 g/L의 당과 110 g/L의 초기세포접종농도로서 약 720 $\mu\textrm{g}$/L의 hGM-CSF를 생산하였다.

  • PDF

Dendritic cells resist to disulfiram-induced cytotoxicity, but reduced interleukin-12/23(p40) production

  • Haebeen Jung;Hong-Gu Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권5호
    • /
    • pp.471-479
    • /
    • 2023
  • Disulfiram (DSF), a medication for alcoholism, has recently been used as a repurposing drug owing to its anticancer effects. Despite the crucial role of dendritic cells (DCs) in immune homeostasis and cancer therapy, the effects of DSF on the survival and function of DCs have not yet been studied. Therefore, we treated bone marrow-derived DCs with DSF and lipopolysaccharide (LPS) and performed various analyses. DCs are resistant to DSF and less cytotoxic than bone marrow cells and spleen cells. The viability and metabolic activity of DCs hardly decreased after treatment with DSF in the absence or presence of LPS. DSF did not alter the expression of surface markers (MHC II, CD86, CD40, and CD54), antigen uptake capability, or the antigen-presenting ability of LPS-treated DCs. DSF decreased the production of interleukin (IL)-12/23 (p40), but not IL-6 or tumor necrosis factor-α, in LPS-treated DCs. We considered the granulocyte-macrophage colony-stimulating factor (GM-CSF) as a factor to make DCs resistant to DSF-induced cytotoxicity. The resistance of DCs to DSF decreased when GM-CSF was not given or its signaling was inhibited. Also, GM-CSF upregulated the expression of a transcription factor XBP-1 which is essential for DCs' survival. This study demonstrated for the first time that DSF did not alter the function of DCs, had low cytotoxicity, and induced differential cytokine production.

Inhibitory mechanism of Korean Red Ginseng on GM-CSF expression in UVB-irradiated keratinocytes

  • Chung, Ira;Lee, Jieun;Park, Young Sun;Lim, Yeji;Chang, Do Hyeon;Park, Jongil;Hwang, Jae Sung
    • Journal of Ginseng Research
    • /
    • 제39권4호
    • /
    • pp.322-330
    • /
    • 2015
  • Background: UV-irradiated keratinocytes secrete various proinflammatory cytokines. UV-induced skin damage is mediated by growth factors and proinflammatory cytokines such as granulocyte macrophage colony stimulating factor (GM-CSF). In a previous study, we found that the saponin of Korean Red Ginseng (SKRG) decreased the expression of GM-CSF in UVB-irradiated SP-1 keratinocytes. In this study, we attempted to find the inhibitory mechanism of SKRG on UVB-induced GM-CSF expression in SP-1 keratinocytes. Methods: We investigated the inhibitory mechanism of SKRG and ginsenosides from Panax ginseng on UVB-induced GM-CSF expression in SP-1 keratinocytes. Results: Treatment with SKRG decreased the expression of GM-CSF mRNA and protein induced by irradiation of UVB in SP-1 keratinocytes. The phosphorylation of ERK was induced by UVB at 10 min, and decreased with SKRG treatment in SP-1 keratinocytes. In addition, treatment with SKRG inhibited the UVB-induced phosphorylation of epidermal growth factor receptor (EGFR), which is known to be an upstream signal of ERK. From these results, we found that the inhibition of GM-CSF expression by SKRG was derived from the decreased phosphorylation of EGFR. To identify the specific compound composing SKRG, we tested fifteen kinds of ginsenosides. Among these compounds, ginsenoside-Rh3 decreased the expression of GM-CSF protein and mRNA in SP-1 keratinocytes. Conclusion: Taken together, we found that treatment with SKRG decreased the phosphorylation of EGFR and ERK in UVB-irradiated SP-1 keratinocytes and subsequently inhibited the expression of GM-CSF. Furthermore, we identified ginsenoside-Rh3 as the active saponin in Korean Red Ginseng.

Agrobacterium을 이용한 형질전환 상추의 세포 현탁배양으로부터 hGM-CSF의 생산 (Production of hGM-CSF from Cell Suspension Culture of Transformed Lettuce Using Agrobacterium-mediated Transformation System)

  • 김영숙;김미영;권태호;양문식
    • Journal of Plant Biotechnology
    • /
    • 제30권1호
    • /
    • pp.97-102
    • /
    • 2003
  • hGM-CSF가 식물세포 현탁 배양을 통하여 생산이 가능한지를 조사하기 위하여 hGM-CSF를 포함하고 있는 A. tumerfaciens LBA4404를 가지고 상추에 형질전환시켰다. 형질전환된 상추로부터 캘러스를 유도하여 캘러스를 이용한 세포배양체계를 확립하였다. PCR과 Southern blot analysis 결과 상추에 hGM-CSF 유전자가 도입된 것을 확인하였으며, Northern blot analysis 결과 상추식물체에 hGM-CSF 유전자가 발현됨을 확인하였다. 현탁 배양 세포로부터 분비된 hGM-CSF를 ELISA를 이용하여 측정한 결과 149.0 $\mu\textrm{g}$/L가 생산됨 을 확인하였다 이러한 결과는 상추의 현탁 배양 세포가 hGM-CSF와 같은 치료용 단백질의 생산 숙주로 이용될 수 있음을 보여주었다.

잣버섯 균사체로부터 분리한 수용성 단백다당체 Lepidan의 면역 증가 작용 (Enhancement of Immune Responses by a Water Soluble Proteoglycan, Lepidan from Lentinus lepideus)

  • 진미림;정규선
    • 약학회지
    • /
    • 제43권5호
    • /
    • pp.635-641
    • /
    • 1999
  • In this study, we investigated the immunopotent activities of lepidan, a water soluble proteoglycan from Lentinus lepideus. To examine whether lepidan may affect nonspecific immune responses, we determined the effect on the production of nitric oxide (NO). Lepidan effectively increased the NO production in IFN-${\gamma}$ and LPS triggered RAW 264.7 cells. To further demonstrate the evidence that lepidan activates various immune cells, we determined the alkaline phosphatase activity, plaque-forming cell number and secretion of interleukine-4 (IL-4) and granulocyte/macrophage-colony stimulating factor (GM-CSF) after lepidan treatment in murine splenocytes. The results showed that lepidan increased alkaline phosphatase activity and the number of plaque-forming cells, which indicates that lepidan can lead B lymphocytes to late stage of differentiation. Also, when the splenocytes were cultured with lepidan for 48 hr, the level of IL-4 and GM-CSF in the supernatant dramatically increased. Taken together, these data suggest that lepidan is a biological response modulator that is able to activate immune responses.

  • PDF

Application of Apoptogenic Pretreatment to Enhance Anti-tumor Immunity of Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF)-secreting CT26 Tumor Cells

  • Jun, Do-Youn;Jaffee, Elizabeth M;Kim, Young-Ho
    • IMMUNE NETWORK
    • /
    • 제5권2호
    • /
    • pp.110-116
    • /
    • 2005
  • Background: As an attempt to develop a strategy to improve the protective immune response to GM-CSF-secreting CT26 (GM-CSF/CT26) tumor vaccine, we have investigated whether the apoptogenic treatment of GM-CSF/CT26 prior to vaccination enhances the induction of anti-tumor immune response in mouse model. Methods: A carcinogeninduced mouse colorectal tumor, CT26 was transfected with GM-CSF gene using a retroviral vector to generate GM-CSF-secreting CT26 (CT26/GM-CSF). The CT26/GM-CSF was treated with ${\gamma}$-irradiation or mitomycin C to induce apoptosis and vaccinated into BALB/c mice. After 7 days, the mice were injected with a lethal dose of challenge live CT26 cells to examine the protective effect of tumor vaccination in vivo. Results: Although both apoptotic and necrotic CT26/GM-CSF vaccines were able to enhance anti-tumor immune response, apoptotic CT26/GM-CSF induced by pretreatment with ${\gamma}$-irradiation (50,000 rads) was the most potent in generating the anti-tumor immunity, and thus 100% of mice vaccinated with the apoptotic cells remained tumor free for more than 60 days after tumor challenge. Conclusion: Apoptogenic pretreatment of GM-CSF-secreting CT26 tumor vaccine by ${\gamma}$-irradiation (50,000 rads) resulted in a significant enhancement in inducing the protective anti-tumor immunity. A rapid induction of apoptosis of CT26/GM-CSF tumor vaccine at the vaccine site might be critical for the enhancement in anti-tumor immune response to tumor vaccine.

빛 조사시간에 따른 형질전환된 담배세포 성장과 hGM-CSF의 생산에 미치는 영향 (The Effects of Light on the Production of hGM-CSF in Transgenic Plant Cell Culture)

  • 이재화;이재화;김영숙;홍신영;신윤지;서조은;권태호;양문식
    • KSBB Journal
    • /
    • 제16권6호
    • /
    • pp.568-572
    • /
    • 2001
  • 빛은 식물에서 성장과 발달을 비롯한 다양한 생리화학적인 역할은 지닌다. 본 연구는 hGM-CSF 유전자가 도입된 형질전한 담배의 callus를 현탁배양하여 hGM-CSF를 생산할 때에 빛을 조사하는 시간에 따른 hGM-CSF의 생산에 미치는 영향을 확인하고자 실시하였다. 24시간 명배양, 18시간 명배양과 암배양을 실시하여 세포성장과 분비된 총단백질, hGM-CSF 생산량을 비교 관찰하였다. 세포의 성장은 24시간 명배양일 때 건조중량이 14.4 g/L로 가장 높았다. 분비된 총단백질의 양은 세가지 경우에서 큰 차이를 관찰할 수가 없었지만, 단위 세포당 분비된 총단백질의 양은 암배양이 다른 것에 비해 1.5배 가량 높았다. hGM-CSF의 생산은 18시간 명배양 조건이 가장 좋았으며 최대생산량이 495.5ug/L에 이르렀다. 또한 분비된 총단백질에서 hGM-CSF가 차지하는 비율은 18시간 명배양이 24시간 명배양에 비해 최대 1.8배 높았다.

  • PDF

Tumor Necrosis Factor Receptor (TNFR)-associated factor 2 (TRAF2) is not Involved in GM-CSF mRNA Induction and TNF-Mediated Cytotoxicity

  • Kim, Jung-Hyun;Cha, Myung-Hoon;Lee, Tae-Kon;Seung, Hyo-Jun;Park, Choon-Sik;Chung, Il-Yup
    • Journal of Microbiology
    • /
    • 제37권2호
    • /
    • pp.111-116
    • /
    • 1999
  • Tumor necrosis factor receptor (TNFR)-associated factor 2 (TRAF2) is known to act as a signal transducer that connects TNFR2 to its downstream effector functions such as proliferation of thymocytes, regulation of gene expression, and cell death. TRAF2 consists of largely two domains, the N-terminal half that contains a signal-emanating region and the C-terminal half that is responsible for binding to the intracellular region of TNFR2. In this study, we examined the possible roles of TRAF2 in granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression and cell death. A truncated mutant of TRAF2 ( 2-263) that contains only a C-terminal half was generated, and transiently transfected to the A549 cell, a human lung cancer cell line, and L929 cell, a murine TNF-sensitive cell line. GM-CSF mRNA was induced in untransfected A540 cells both in dose- and time-dependent manner upon the exposure of TNF. However, neither the full length TRAF2 nor the mutant altered GM-CSF mRNA production regardless of the presence or absence of TNF. Furthermore, neither TRAF2 versions significantly changed the cytotoxic effect of TNF on L929 cells. These data suggest that TRAF2 may not be involved in the signal transduction pathway for GM-CSF gene induction and cell death mediated by TNF.

  • PDF

Development and Functions of Alveolar Macrophages

  • Woo, Yeon Duk;Jeong, Dongjin;Chung, Doo Hyun
    • Molecules and Cells
    • /
    • 제44권5호
    • /
    • pp.292-300
    • /
    • 2021
  • Macrophages residing in various tissue types are unique in terms of their anatomical locations, ontogenies, developmental pathways, gene expression patterns, and immunological functions. Alveolar macrophages (AMs) reside in the alveolar lumen of the lungs and serve as the first line of defense for the respiratory tract. The immunological functions of AMs are implicated in the pathogenesis of various pulmonary diseases such as allergic asthma, chronic obstructive pulmonary disorder (COPD), pulmonary alveolar proteinosis (PAP), viral infection, and bacterial infection. Thus, the molecular mechanisms driving the development and function of AMs have been extensively investigated. In this review article, we discuss the roles of granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor (TGF)-β in AM development, and provide an overview of the anti-inflammatory and pro-inflammatory functions of AMs in various contexts. Notably, we examine the relationships between the metabolic status of AMs and their development processes and functions. We hope that this review will provide new information and insight into AM development and function.