• Title/Summary/Keyword: Granulated Glass

Search Result 18, Processing Time 0.021 seconds

Effect of GGBS and fly ash on mechanical strength of self-compacting concrete containing glass fibers

  • Kumar, Ashish;Singh, Abhinav;Bhutani, Kapil
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.429-437
    • /
    • 2021
  • In the era of building engineering the intensification of Self Compacting Concrete (SCC) is world-shattering magnetism. It has lot of rewards over ordinary concrete i.e., enrichment in production, cutback in manpower, brilliant retort to load and vibration along with improved durability. In the present study, the mechanical strength of CM-2 (SCC containing 10% of rice husk ash (RHA) as cement replacement and 600 grams of glass fibers per cubic meter) was investigated at various dosages of cement replacement by fly ash (FA) and GGBS. A total of 17 SCC mixtures including two control SCC mixtures (CM-1 and CM-2) were developed for investigating fresh and hardened properties in which, ten ternary cementitious blends of SCC by blending OPC+RHA+FA, OPC+RHA+GGBS and five quaternary cementitious blends (OPC+RHA+FA+GGBS) at different replacement dosages of FA and GGBS were developed with reference to CM-2. For constant water-cement ratio (0.42) and dosage of SP (2.5%), the addition of glass fibers (600 grams/m3) in CM-1 i.e., CM-2 shows lower workability but higher mechanical strength. While fly ash based ternary blends (OPC+RHA+FA) show better workability but lower mechanical strength as FA content increases in comparison to GGBS based ternary blends (OPC+RHA+GGBS) on increasing GGBS content. The pattern for mixtures appeared to exhibit higher workablity as that of the concentration of FA+GGBS rises in quaternary blends (OPC+RHA+FA+GGBS). A decrease in compressive strength at 7-days was noticed with an increase in the percentage of FA and GGBS as cement replacement in ternary and quaternary blended mixtures with respect to CM-2. The highest 28-days compressive strength (41.92 MPa) was observed for mix QM-3 and the lowest (33.18 MPa) for mix QM-5.

Consolidation of Quartz Powder by the Geopolymer Technique

  • Ikeda, Ko;Nakamura, Yoshinori
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.120-123
    • /
    • 2000
  • The geopolymer technique may be a future-oriented technology for saving energies and resources. This technique requires 3 fundamental elements so-called filler, hardener and geopolymer liquor being generally an alkaline silicate solution. Quartz powder, water quenched granulated blast furnace slag and sodium silicate solution prepared from $Na_2O\cdot2SiO_2$were chosen for these three elements. After mixing these starting materials in appropriate proportions, monoliths were prepared by casting at room temperature. Strength tests showed the following results for 28d age speciment: 7.9-12.7 MPa in flexural strength and 20.2-32.8 MPa in compressive strength, depending on geopolymer liquor/solid ratio, P/S and fineness of the quartz powders used.

  • PDF

Effects of Composition on the Hydration of Blastfurnace Granulated Slag (슬래그의 조성변화가 수화반응에 미치는 영향)

  • 오희갑;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.4
    • /
    • pp.237-242
    • /
    • 1979
  • In order to improve hydration reactivity of blast furnace slag, it's composition was changed by adding of CaO. The slags were quenched in water at 1,400℃. Hydration reactivityof modified slags was studied by x-ray diffractometer, conduction calorimeter and so on. Experimental results were summarized as follows. 1. Glass content and hydration reactivity of slag depend significantly on quenching temperature of the slag melt. To enhance the reactivity, slag melts which belongs to Frenkel-type liquid, must be quenched above 1,300℃. 2. Vitrification of slag melts was confirmed as CaO/SiO2 ratio increased up to 1.57 with flux, 1.51 without flux, also their hydration reactivity was improved.

  • PDF

Recycling and Characteristics of Plasma Melting Slag Materials Produced by Different Cooling Methods (플라즈마 용융방식으로 배출된 슬래그의 냉각방식에 따른 재료적 특성 및 재활용)

  • Chung, Juyoung;Bae, Wookeun;Kim, Moonil;Park, Seyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.7
    • /
    • pp.25-31
    • /
    • 2010
  • In this study, it was intended to suggest new cooling method that enables to improve the applicability and added value higher than existing slag by applying new cooling method(powder cooling slag) at the time discharging slag, which is produced from the ash melting system that the plasma torch is used for the first time in Korea. It is suggested the applicative direction in the development of future recycling process by discovering its nature of material and applicative possibility as earthwork material. The ashes produced after the sewage sludge discharged from Y city was incinerated by the fluidized bed method and was used as test materials. As result of XRF(X-Ray Flourescence Spectrometry) analysis, main ingredient of sewage sludge ashes was $SiO_2$(32%) besides CaO, $Al_2O_3$, $Fe_2O_3$, and so on. In addition, as result of XRD analysis, traditional diffuse pattern of glass could be found from granulated air-cooled slags, while a minor crystal phase could be observed from powder cooling slag, because the powder on the surface exists in the state not melted. From EDX(Energy Dispersive X-ray Spectroscopy) analysis, it is deemed that powder ingredient has no change before and after it is used as cooling medium, and accordingly it is thought that the powder can be produced as the material where the function is added if used in different shape.

Effect of crude fibre additives ARBOCEL and VITACEL on the physicochemical properties of granulated feed mixtures for broiler chickens

  • Jakub Urban;Monika Michalczuk;Martyna Batorska;Agata Marzec;Adriana Jaroszek;Damian Bien
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.274-283
    • /
    • 2024
  • Objective: The aim of the study was to evaluate the physicochemical properties (nutrient composition, pH, water content and activity, sorption properties) and mechanical properties (compression force and energy) of granulated feed mixtures with various inclusion levels of crude fibre concentrates ARBOCEL and VITACEL for broiler chickens, i.e. +0.0% (control group - group C), +0.3%, +0.8%, +1.0%, +1.2%. Methods: The feed mixtures were analyzed for their physicochemical properties (nutrient composition by near-infrared spectroscopy, pH with the use a CP-401 pH meter with an IJ-44C glass electrode, water content was determined with the drying method and activity was determined with the Aqua Lab Series 3, sorption properties was determined with the static method) and mechanical properties (compression force and energy with the use TA-HD plus texture analyzer). The Guggenheim-Anderson-de Boer (GAB) model applied in the study correctly described the sorption properties of the analyzed feed mixtures in terms of water activity. Results: The fibre concentrate type affected the specific surface area of the adsorbent and equilibrium water content in the GAB monolayer (p≤0.05) (significantly statistical). The type and dose of the fibre concentrate influenced the dimensionless C and k parameters of the GAB model related to the properties of the monolayer and multilayers, respectively (p≤0.05). They also affected the pH value of the analyzed feed mixtures (p≤0.05). In addition, crude fibre type influenced water activity (p≤0.05) as well as compression energy (J) and compression force (N) (p≤0.001) (highly significantly statistical) of the feed mixtures. Conclusion: The physicochemical analyses of feed mixtures with various inclusion levels (0.3%, 0.8%, 1.0%, 1.2%) of crude fiber concentrates ARBOCEL or VITACEL demonstrated that both crude fiber types may be used in the feed industry as a feedstuff material to produce starter type mixtures for broiler chickens.

Effect of Alkali Activators on Early Compressive Strength of Blast-Furnace Slag Mortar (고로슬래그 모르타르의 초기 강도에 대한 알칼리자극제의 영향)

  • Moon, Han-Young;Shin, Dong-Gu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.120-128
    • /
    • 2005
  • In the construction industry, due to the cost rise of raw material for concrete, we have looked into recycling by-products which came from foundry. When using the Ground Granulated Blast-Furnace Slag(SG), it is good for enhancing the qualities of concrete such as reducing hydration heat, increasing fluidity, long-term strength and durability, but it has some problems : construction time is increased or the rotation rate of form is decreased due to low development of early strength. In this study, therefore, to enhance the early strength of SG mortar, we used some alkali activators(KOH, NaOH, $Na_2CO_3$, $Na_2SO_4$, water glass, $Ca(OH)_2$, alum. This paper deals with reacted products, setting time, heat evolution rate, flow and the strength development of SG cement mortar activated by alkali activators. From the results, if alkali activators were selected and added properly, SG is good for using as the materials of mortar and concrete.

Evaluation of Flexural Performance of Eco-Friendly Alkali-Activated Slag Fiber Reinforced Concrete Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 알카리활성 슬래그 섬유보강콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.170-178
    • /
    • 2015
  • In this study, it was developed eco-friendly alkali-activated slag fiber reinforced concrete using ground granulated blast furnace slag, alkali activator (water glass, sodium hydroxides), and steel fiber. Eight reinforced concrete beam using alkali-activated slag concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, mixed/without of steel fiber. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The reinforced concrete beams using the eco-friendly alkali-activated slag fiber reinforced concrete was failed by the flexure or flexure-shear in general. In addition, the maximum strength increased with the adding the mol of sodium hydroxide, and the specimen reinforced the steel fiber showed the value of maximum strength which is increased by 15.8% through 25.9%. It is thought that eco-friendly alkali-activated slag fiber reinforced concrete can be used with construction material and product to replace normal concrete. If there is applied to structures such as precast concrete member and production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.

Evaluation of Flexural Performance of Eco-Friendly Inorganic Binding Material RC Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 무기결합재 철근콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Kim, Jin-Hwan;Jang, Kie-Chang
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.261-269
    • /
    • 2013
  • In this study, it was developed eco-friendly inorganic binding material concrete using ground granulated blast furnace slag and alkali activator (water glass, sodium hydroxides). Eight reinforced concrete beam using inoganic binding material concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, type of admixture and admixture. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The eco-friendly concrete using inorganic binding material encouraged alkali activation reaction was rapidly hardening speed and showed possibility as a high strength concrete. Also, the RC beams using new materials showed similar behavior and failed similarly with RC beam used portland cement. It is thought that eco-friendly inorganic binding material concrete can be used with construction material and product as a basic research to replace cement concrete. If there is application to structures in PC member as well as production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.