• Title/Summary/Keyword: Granular pile

Search Result 55, Processing Time 0.02 seconds

Analysis on the Analytical Behavior of Soft Ground Reinforced with Granular Compaction Piles (GCP로 보강된 연약지반의 해석적 거동분석)

  • Kim, Min-Seok;Na, Seung-Ju;Yang, Yeol-Ho;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.3
    • /
    • pp.27-37
    • /
    • 2016
  • Although many studies on the Granular Compaction Pile (GCP) have been done by many researchers, the GCP design has not been systematically done due to the absence of the rational design methodology. As the GCP design has been mostly done by engineers' own experiences, some failure cases have been reported to occur. For this reason, it is very difficult to confirm definite causes of the failure and establish the prevention plans for the failure. Therefore, this study aims to investigate the optimal mixing ratio of gravel and sand, the effects of the internal friction angle of the GCP on the stress concentration ratio and the vertical and horizontal settlements. In order to analyze the behavior of the soft ground reinforced with the GCP depending on the different design parameters such as the stress concentration ratio and the internal friction angle, a number of finite element (FE) analyses were performed. From the direct shear test, the optimal mixing ratio of gravel to sand was found to be 70:30. Based on the numerical analyses, as the internal friction angle increased, the stress concentration ratio increased and it converged to a constant value. In addition, the larger the internal friction angle, the smaller the settlements. Consequently, the use of the optimal mixing ratio of gravel and sand can lead to reducing both the lateral flow and the heaving phenomenon.

Rendezvous Mission to Apophis: IV. Investigation of the internal structure - A lesson from an analogical asteroid Itokawa

  • Jin, Sunho;Kim, Yaeji;Jo, Hangbin;Yang, Hongu;Kwon, Yuna G.;Ishiguro, Masateru;Jeong, Minsup;Moon, Hong-Kyu;Choi, Young-Jun;Kim, Myung-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.58.1-59
    • /
    • 2021
  • Exploration of asteroids' internal structure is essential for understanding their evolutional history. It also provides a fundamental information about the history of coalescence and collision of the solar system. Among several models of the internal structures, the rubble-pile model, confirmed by the near-Earth asteroid (25143) Itokawa by Hayabusa mission [1], is now widely regarded as the most common to asteroids with size ranging from 200 m to 10 km [2]. On the contrary, monolithic and core-mantle structures are also possible for small asteroids [3]. It is, however, still challenging to look through the interior of a target object using remote-sensing devices. In this presentation, we introduce our ongoing research conducted at Seoul National and propose an idea to infer the internal structure of Apophis using available instruments. Itokawa's research provides an important benchmark for Apophis exploration because both asteroids have similar size and composition [4][5]. We have conducted research on Itokawa's evolution in terms of collision and space weathering. Space weathering is the surface alteration process caused by solar wind implantation and micrometeorite bombardment [6]. Meanwhile, resurfacing via a collision acts as a counter-process of space weathering by exposing fresh materials under the matured layer and lower the overall degree of space weathering. Therefore, the balance of these two processes determine the space weathering degrees of the asteroid. We focus on the impact evidence on the boulder surface and found that space weathering progresses in only 100-10,000 years and modifies the surface optical properties (Jin & Ishiguro, KAS 2020 Fall Meeting). It is important to note that the timescale is significantly shorter than the Itokawa's age, suggesting that the asteroid can be totally processed by space weathering. Accordingly, our result triggers a further discussion about why Itokawa indicates a moderately fresh spectrum (Sq-type denotes less matured than S-type). For example, Itokawa's smooth terrains show a weaker degree of space weathering than other S-type asteroids [7]. We conjecture that the global seismic shaking caused by collisions with >1 mm-sized interplanetary dust particles induces granular convection, which hinders the progression of space weathering [8]. Note that the efficiency of seismic wave propagation is strongly dependent on the internal structure of the asteroid. Finally, we consider possible approaches to investigate Apophis's internal structure. The first idea is studying the space weathering age, as conducted for Itokawa. If Apophis indicates a younger age, the internal structure would have more voids [9]. In addition, the 2029 close encounter with Earth provides a rare natural opportunity to witness the contrast between before and after the event. If the asteroid exhibits a slight change in shape and space weathering degree, one can determine the physical structure of the internal materials (e.g., rubble-pile monolithic, thick or thin regolith layer, the cohesion of the materials). We will also consider a possible science using a seismometer.

  • PDF

Logging for a Stone Column Using Crosshole Seismic Testing (크로스홀 탄성파 시험을 이용한 쇄석말뚝의 검측)

  • Kim, Hak-Sung;Mok, Young-Jin
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.139-145
    • /
    • 2010
  • An integrity testing for stone columns was attempted using crosshole S-wave logging. The method is conceptionally quite similar to the crosshole sonic logging (CSL) for drilled piers. The critical difference in the logging is the use of S-wave rather than P-wave, which is used in CSL, because swave is the only wave sensing the stiffness of slower unbounded materials than water. An electro-mechanical source, which can generate reversed Swave signals, was utilized in the logging. The stone column was delineated using the S-wave travel times across the stone column, the S-wave velocity profile of the crushed stone($V_{cs}$-profile) and that of surrounding soil($V_s$-profile). In the calculation of $V_{cs}$-profile of the crushed stone, its friction angle and Ko (coefficient of lateral earth pressure at rest) are recommended to be used. The calculation of the column diameter is not much affected by the values of friction angle and Ko.

Effect of Microstructure on the Strain Aging Properties of API X70 Pipeline Steels (API X70 라인파이프 강재의 변형 시효 특성에 미치는 미세조직의 영향)

  • Lee, Seung-Wan;Im, In-Hyuk;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.702-708
    • /
    • 2018
  • This study deals with the effect of microstructure factors on the strain aging properties of API X70 pipeline steels with different microstructure fractions and grain sizes. The grain size and microstructure fraction of the API pipeline steels are analyzed by optical and scanning electron microscopy and electron backscatter diffraction analysis. Tensile tests before and after 1 % pre-strain and thermal aging treatment are conducted to simulate pipe forming and coating processes. All the steels are composed mostly of polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite. After 1 % pre-strain and thermal aging treatment, the tensile test results reveal that yield strength, tensile strength and yield ratio increase, while uniform elongation decreases with an increasing thermal aging temperature. The increment of yield and tensile strengths are affected by the fraction of bainitic ferrite with high dislocation density because the mobility of dislocations is inhibited by interaction between interstitial atoms and dislocations in bainitic ferrite. On the other hand, the variation of yield ratio and uniform elongation is the smallest in the steel with the largest grain size because of the decrease in the grain boundary area for dislocation pile-ups and the presence of many dislocations inside large grains after 1 % pre-strain.

The Behavior on Stress and Settlement of GCP Composite Ground with Different Shear Strength of Soil (GCP로 개량된 복합지반의 지반강도 별 응력 및 침하거동)

  • Na, Seung-Ju;Kim, Daehyeon;Kim, Gyeong-Eop
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.63-74
    • /
    • 2017
  • Although the Granular Compaction Pile (GCP) has been used for many decades, several failures still occur such as bulging, shear failure and other phenomena, indicating that more refined study is needed. The main objective of the study is to evaluate the stress concentration ratio for both area replacement ratio and shear strength of soil through literature review and numerical analysis. Numerical analysis using the finite element program ABAQUS has been performed for the composite ground with GCP. The behavior stress and settlement of composite ground have been analyzed for both the area replacement ratio (10~40%) and shear strength of soil (25~75 kPa). As a result of numerical analysis, as the soil strength and area replacement ratio increased, the average stree related coefficient and stress concentration ratio for depth tended to decrease, and stress related coefficient of upper layer tend to decrease equally, but the stress concentration ratio decreased. Therefore, tendency that the value in th upper layer differs from the value in other depths was displayed. Care should be taken because it is possible to make mistakes in designing the entire composite ground with the values measured in the upper layer. Also, the settlement reduction factor was compared with the existing equation and numerical analysis. And the value obatined from the existing equation and numerical analysis are similar.