• Title/Summary/Keyword: Granite soils

Search Result 270, Processing Time 0.022 seconds

Culture condition for gametophyte and sporophyte masspropagation of bamboo fern (Coniogramme japonica) using tissue culture (조직배양을 이용한 가지고비고사리의 전엽체와 포자체 대량번식을 위한 배양조건)

  • Park, Kyungtae;Jang, Bo Kook;Lee, Cheol Hee
    • Journal of Plant Biotechnology
    • /
    • v.46 no.2
    • /
    • pp.119-126
    • /
    • 2019
  • This study was conducted to investigate the optimal culture method for gametophyte and sporophyte propagation in Coniogramme japonica (Thunb.) Diels, which can be used in various fields. The propagation of prothallus were cultured in 1/4 - 1 Murashige and Skoog medium and Knop medium for 10 weeks. The results indicated that the fresh weight of prothallus was the highest (14.5 g) in 1MS medium. Subsequently, various concentrations of sucrose, activated charcoal and nitrogen source were also added to 1MS medium and cultured for 8 weeks. The results provided that the sucrose concentration was 3% and the fresh weight of prothallus was the highest 10.8 g. According to the concentration in the range of 8.8 ~ 10.8 g, in the case of activated charcoal, the four treatments showed no significant difference. The nitrogen source was added at a concentration of 30, 60 and 120 mM with the ratio of ${NH_4}^+:{NO_3}^-$ being 1 : 2. As a result, the fresh weight of all treatments increased to similar level but there was no significant difference. We investigated sporophyte formation according to soil type and the highest number of sporophytes at 228.0 was formed in soils mixed with horticultural substrate and decomposed granite at 2 : 1 (v : v). On the other hand, sporophyte was not formed in soils containing peatmoss except for the one with peatmoss and decomposed granite at 2 : 1 (v : v).

Geoenvironmental Influence on the Recycled Soil from Demolition Concrete Structures for using in Low Landfilling (건설폐토석의 성토에 따른 지반환경적 영향)

  • Shin, Eun-Chul;Kang, Jeong-Ku;Ahn, Min-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.21-30
    • /
    • 2011
  • The recycled soil that is proceeded from demolition concrete structures was analyzed by the methods of the physical and mechanical tests of soil and TCLP test to use the soil in low landfilling for the construction of an industrial complex. The laboratory test for diffusion of alkali ion in soil mass was analyzed by the methods of XRF and ICP. The fish toxicity test was also conducted to find an environmental influence. The recycled soil through the laboratory test satisfied the engineering property for low landfilling and the criteria of soil contamination. However, the solution which producted by 1:1 ratio of recycled soil and water contained the high pH concentration by alkali ion. The calcium hydroxide solution by CSH cement paste was estimated as the main reason why pH concentration is increased more than 9.0. The high pH concentration in recycled soils causes a toxicity to the livability of fishes. A diffusion area of pH concentration in the ground was analyzed by the Visual Modflow Ver. 2009 program based on geotechnical investigation. The high pH concentration in the recycled soils can be remained as high value due to cement paste in the long term period. Therefore, in the early stage of landfilling work, the mixing with the weathered granite soil is necessary to control the pH concentration.

Tentative Suitability Criteria for the Consolidation of Cultivated Upland in Korea (밭 경지정리(耕地整理) 적합지역(適合地域) 선정기준(選定基準) 시안(試案))

  • Jung, Yeun-Tae;Son, Il-Soo;Yun, Eul-Soo;Sonn, Yeon-Gyu;No, Young-Pal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.81-85
    • /
    • 1996
  • Tentative consolidation criteria, a kind of land suitability classification, was established for cultivated upland soils. The criteria were composed of systematically quantified individual soil properties such as physiography(relief), slope, available soil depth etc., and local features such as soil complexity, mapping unit separation, width/length ratio etc. The criteria was applied to upland soils in granite area, and sedimentary rock area. It was clear that the comparison of local features among candidated areas, and classification of suitability classes for land consolidation of upland soils was satisfactory for selection. The status of the areas classified to "Well suitable" were distributed on alluvial plains or less dissected rollings with lower complexity of soils occurred and extended acreage in each mapping unit. On the other hand, the areas classified as "Unsuitable" were distributed on the elongated narrow valleys with quite divided mapping units by paddy fields on the valley bottom.

  • PDF

Survey on the General Physical and Chemical Characteristics of Apple Orchard Soils (사과원토양(園土壤)의 일반이화학적성질(一般理化學的性質)에 관(關)한 조사연구(調査硏究))

  • Lee, Mahn Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.4
    • /
    • pp.205-211
    • /
    • 1973
  • General physical and chemical characteristics of eleven apple orchard soils derived from granite, granodiorite, diorite, arkose sandstone and shale were investigated in relation to soil profile. The results are summerized as follows: 1. Soils were mostly sandy and showed pH 4.35 to 6.75, 1.14 to 5.58 of organic matter, 0.065 to 0.209% of nitrogen. All properties decreased with depth. 2. Total exchangeable bases of surface soils were comparablly low (4.89 to 17.81me/100g, Ca>Mg>K>Na). Cation exchange capacity ranged from 7.74 to 21.72 mg/100g and base saturation percentage from 22.52 to 94.62%. 3. Phosphorus content of surface soil was very low (less than 35.5 mg/100g). The contents of potassium (7.2-79.2 mg/100g), available copper (1.0-16.9 ppm) and water soluble boron (0.18-0.72 ppm) were high in surface soil but low with depth. The content of manganese showed clear difference with pH, that is, at pH 4 to 6 water soluble manganese ranged from 0.42 to 17.8 ppm and exchangeable manganese from 9.82 to 66.38 ppm but above pH 6 the water soluble was less than 0.70 ppm and the exchangeable less than 22.25 ppm.

  • PDF

Evaluation of Nonlinear Deformational Characteristics of Soils from Laboratory and Field Tests (실내시험 및 현장시험을 통한 지반의 비선형 변형특성 평가)

  • 김동수;권기철
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.89-100
    • /
    • 1997
  • It is very improtant to evaluate the reliable nonlinear deformational characteristics of soils not only in the analysis of geotechnical structures under working stress conditions but also for the soil dynamic problems. Field testings such as crosshole and pressuremeter tests can be used to determine the modulus of soils under in-situ conditions, but it is not possible to determine the modulus over the entire strain amplitude range. Laboratory methods such as resonant column 1 torsional shear test can be used to determine the modulus over the whole strain amplitude range, but it is very difficult to obtain the representative undisturbed samples on the sixte. For the reliable evaluation of nonlinear deformation characteristics of soils on a typical site, small strain modulus obtained from field testy and nomalized modulus reduction curve determined by laboratory bests need to be combined. In this paper, laboratory and Held testy were performed at a sixte which consisted of granite wearthered residual boils to evaluate the nonlinear deformational characteristics of coils such as the effects of strain amplitude, loading frequency, confining pressure and sample disturbance. It has been shorn that when the effects of these factors are properly taken into account, the stiffness values evaluated by various field and labrotary tests are comparable to each other fairly well. Finally, the procedure to evaluate the nonlinear deformstional characteristics of the sixte was proposed.

  • PDF

Soil Characteristics according to the Geological Condition of Natural Slopes in Busan Area (부산지역 자연사면의 지질조건에 따른 토질특성)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.471-481
    • /
    • 2007
  • The Landslide in natural slope is occurred mostly by a heavy rain of the summer. This landslide is influenced in soil property of the surface than the rock mass. Soils in natural slope are created by weathering phenomena of the bedrock. These soils differed to the geological conditions such as sedimentary rock, metamorphic rock and volcanic rock. Therefore, estimation of landslide in natural slope is the most important analysis of the bedrock distributions and soil characteristics. This study analyzed the soil property to the natural slopes of Busan area where is distributed to volcanic rock, granite and sedimentary rock. Soil sample conducted various soil tests for estimate the soil physical property and soil engineering characteristics, and analysis of the correlation of geological conditions. In the experiment result, soils were mainly classified by a clayey sand. It is also established that $1.07{\sim}1.99kg/cm^3$ for wet density, $28.2{\sim}39.6^{\circ}$ for angle of shearing resistance, and $8.10{\times}10^{-5}{\sim}8.38{\times}10^{-2}cm/sec$ for coefficient of permeability. From the physical parameter, the soils are estimated to the permeable ground with good shear strength, and soil properties are showed a differential tendency for each geological condition.

A Study on the Valley Shapes with Different Parent Rocks in Yeongnam Area (영남지역(嶺南地域) 주요(主要) 모암별(母岩別) 곡간(谷間)의 특성(特性)에 관한 연구(硏究))

  • Yun, Eul-Soo;Jung, Yeun-Tae;Kim, Min-Tae;Jung, Ki-Yuol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.3
    • /
    • pp.139-144
    • /
    • 2000
  • This study was conducted to obtain the basic information to increase the practical use of soil survey data through the subdividing of valley shapes with soil sequences due to different parent rocks, and to study the relationship between the valley shapes and parent rock. The various rocks such as sedimentary(gray shale and sand stone) and igneous rocks(granite, granite gneiss and andesite porphyry) which are the major parent rocks in Yeongnam area were investigated. The characteristics of valleys formed and the kinds of soils derived from different rocks were analysed by using aerial photographs and topographical maps scaled 1:5,000. The rill density in igneous rock area was as high as 40. But the rill bifurcation ratio of first order stream was higher in the sedimentary than the igneous rocks except granite area. The mean slope of valleys in igneous areas was about 8%, which was higher than that of the sedimentary areas. The variability of valley width in the complexly metamorphosed rock, such as granite gneiss, and andesite porphyry, was greater than in sedimentary and in granite rocks. Based on the variability of valley widths and valley slopes, it was possible to classify the valleys into two types. The "Uterus-shaped valleys" had wide variability of valley width and were located in the areas of granite gneiss and andesite porphry rocks. while the "Roots-shaped valleys" had narrow variability of valley width and were located in the sedimentary areas. "Uterus-shaped valleys" were typified by having land forms of mountain foot slopes and alluvial fans, and the soil drainage sequences also had complexities. So that, we concluded that the variability of valley width and valley slopes was associated with kinds of parent rocks and metamorphism which influences soil sequence and characteristics.

  • PDF

Characteristics of the Incompatible Element Contents of the Ginsengs from Keumsan (금산 지역 인삼의 비호정성 원소 함량 특성)

  • Song, Suck-Hwan;Yoo, Sun-Kyun;Min, Ell-Sik
    • Journal of Ginseng Research
    • /
    • v.30 no.3
    • /
    • pp.137-152
    • /
    • 2006
  • This study is for chemical relationships between ginsengs(2, 3 and 4 yr) and soils from three representative soil types of Keumsan, shale(SL), phyllite(PH) and granite(GR). In the weathered soils, the GR is mainly high. Positive relationships are dominant, and negative correlations are shown in the Y-Nb and Nb-Ta pairs. In the field soils, the GR is high while the SL is low. Regardless of the localities, available correlation relationships are dominant in the GR, and dominant in the 3 year area. In the host rocks, high element contents are shown in the GR. Positive relationships, regardless of the localities, are shown in the Zr-Hf, Ta, Nb-Ta and Hf-Ta pairs. In the ginsengs, chemical contents are distinctive with the different ages. Positive relationships are shown in the Y-Nb pair of the SL, Rb-Y pair of the PH, and Rb-Sr pair of the GR. Relative ratios(GR/SL and GR/PH) of the ginsengs suggest that ginsengs from the GR are higher than those of SL and PH while in the comparisons between PH and SL, 2 year ginsengs are high in the SL and 4 year ginsengs are high in the PH. Relative ratios between weathered and field soils (weathered/field) suggest high element contents in the weathered soils from the SL and PH and in the relative ratios(weathered soil/host rock), high element contents in weathered soils. Relative ratios between field soils and ginsengs(field soil/ginseng), regardless of the ages, show several ten and hundred times, suggestive of high contents in the soils. Comparisons with the overall average contents of each area show differences of several ten to hundred times in the SL and PH, and of several to ten times in the GR. These relationships suggest that contents of the ginsengs from the GR are more similar to the soils relative to those of SL and PH.

Uplift Testing and Load-transfer Characteristics of Model Drilled Shafts in Compacted Weathered Granite Soils (화강풍화토 지반에 타설된 소형 현장 타설 말뚝의 인발시험 및 하중 전이 특성)

  • 임유진;서석현
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.105-117
    • /
    • 2002
  • In the design of foundations for the super-structures such as transmission towers and oil-platforms, the foundations must be considered as a medium to resist cyclic tensile forces. In this study, the uplift capacity of the drilled shaft used as the medium resisting to this pattern of forces is investigated by performing cyclic uplift test of a small model-drilled shaft constructed in compacted granite soil in a steel chamber. In this test, the behavioral difference between a pile loaded on the top of the pile and a pile loaded at the bottom of the pile was investigated intensively. The load transfer curves obtained from the test were investigated by changing the confining pressure in the chamber. The load tests also included creep test and cyclic test. It is found from the tests that uplift capacity of the shaft loaded at the bottom is greater than that of the shaft loaded on the top of the pile. It is found also from the creep test that the pile loaded at the bottom was more stable than the shaft loaded on the top. If a pile loaded at the bottom is pre-tensioned, the pile will be most effective to the creep displacement. It is found also from the cyclic tests that apparent secant modulus obtained in a cycle of the load increases with the number of cycles.

Culture Conditions Affecting Spore Germination, Prothallus Propagation and Sporophyte Formation of Dryopteris nipponensis Koidz. (참지네고사리의 포자발아, 전엽체 및 포자체 번식에 영향을 미치는 배양 조건)

  • Jang, Bo Kook;Cho, Ju Sung;Lee, Ki Cheol;Lee, Cheol Hee
    • Horticultural Science & Technology
    • /
    • v.35 no.4
    • /
    • pp.480-489
    • /
    • 2017
  • We investigated a suitable method for in vitro germination of spores, propagation of prothalli, and the formation of sporophytes in the fern Dryopteris nipponensis Koidz. Spore germination rate was relatively high regardless of culture medium. Prothallus development was faster in Knop medium than in Murashige and Skoog (MS) media. Prothalli used in all experiments were obtained from germinated spores, and were cultivated in different concentrations of media components. The active formation of sexual organs such as antheridium made 1MS medium suitable for prothallus propagation, although there was a lower propagation ratio compared to Knop medium. Growth and morphogenesis of prothalli were most effective on 1MS medium containing 2% sucrose, and 60 mM of total nitrogen source with 20:40 mM ratio of $NH_4{^+}:NO_3{^-}$. To select a suitable soil composition for sporophyte formation, ground prothalli were cultivated on single and mixed soils using bed soil, peat moss, perlite, and decomposed granite for 14 weeks. Bed soil promoted sporophyte formation and growth regardless of single or mixed use. In particular, a mixture of bed soil and decomposed granite in a 2:1 ratio (v:v) led to accelerated sporophyte formation ($0.83/cm^2$).