We have earlier developed a 40-channel SQUID system. An important figure of merit of a MEG system is the localization error, within which the underlying current source can be localized. With this system, we investigated the localization error in terms of the standard deviation of the coordinates of the ECDs and the systematic error due to inadequate modeling. To do this, we made localization of single current dipoles from tangential components of auditory evoked fields. Equivalent current dipoles (ECD) at N1m peak were estimated based on a locally fitted spherical conductor model. In addition, we made skull phantom and simulation measurements to investigate the contribution of various errors to the localization error. It was found that the background noise was the main source of the errors that could explain the observed standard deviation. Further, the amount of systematic error, when modeling the head with a spherical conductor, was much less than the standard deviation due to the background noise. We also demonstrated the performance of the system by measuring the evoked fields to grammatical violation in sentence comprehension.
This study explores teacher's corrective feedback types in an error treatment sequence in Korean EFL classroom setting. Corrective feedback moves are coded as explicit correction, recast, or initiations to self-repair. The frequency and distribution of each corrective feedback type are examined. But the special focus was given on feedback types eliciting learner's self-repair (clarification request, metalinguistic feedback, elicitation, and repetition of error) because initiations to self-repair are believed to facilitate language learning more than other strategies. The results of the study are as follows. First, there was an overwhelming tendency for teacher to use recasts whereas initiations to self-repair were not used as much as recast (52.4% vs. 29.5%). Second, the teacher tended to select feedback types in accordance with error types: namely, recasts after phonological, lexical, and translation errors and initiations to self-repair after grammatical errors though the differences were not significant. Finally, teacher's belief and students' expectation on corrective feedback were compared with actual corrective feedback representations respectively and some mismatches were found. Though both teacher and the students acknowledged the importance and necessity of self-repair, self-repair were not put into practice as such. Therefore, this study suggests more initiations to self-repair be used for effective language learning.
Some spoken word errors that violate grammatical or writing rules occurs frequently in communication environments like mobile phone and messenger. These unexpected errors cause a problem in a language processing system for many applications like speech recognition, text-to-speech translation, and so on. In this paper, we proposed and implemented an automatic correction system of ill-formed words and word spacing errors in SMS sentences that has been the major errors of poor accuracy. We experimented three methods of constructing the word correction dictionary and evaluated the results of those methods. They are (1) manual construction of error words from the vocabulary list of ill-formed communication languages, (2) automatic construction of error dictionary from the manually constructed corpus, and (3) context-dependent method of automatic construction of error dictionary.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.507-511
/
2022
문법 교정 모델은 입력된 텍스트에 존재하는 문법 오류를 탐지하여 이를 문법적으로 옳게 고치는 작업을 수행하며, 학습자에게 더 나은 학습 경험을 제공하기 위해 높은 정확도와 재현율을 필요로 한다. 이를 위해 최근 연구에서는 문단 단위 사전 학습을 완료한 모델을 맞춤법 교정 데이터셋으로 미세 조정하여 사용한다. 하지만 본 연구에서는 기존 사전 학습 방법이 문법 교정에 적합하지 않다고 판단하여 문단 단위 데이터셋을 문장 단위로 나눈 뒤 각 문장에 G2P 노이즈와 편집거리 기반 노이즈를 추가한 데이터셋을 제작하였다. 그리고 문단 단위 사전 학습한 모델에 해당 데이터셋으로 문장 단위 디노이징 사전 학습을 추가했고, 그 결과 성능이 향상되었다. 노이즈 없이 문장 단위로 분할된 데이터셋을 사용하여 디노이징 사전 학습한 모델을 통해 문장 단위 분할의 효과를 검증하고자 했고, 디노이징 사전 학습하지 않은 기존 모델보다 성능이 향상되는 것을 확인하였다. 또한 둘 중 하나의 노이즈만을 사용하여 디노이징 사전 학습한 두 모델의 성능이 큰 차이를 보이지 않는 것을 통해 인공적인 무작위 편집거리 노이즈만을 사용한 모델이 언어학적 지식이 필요한 G2P 노이즈만을 사용한 모델에 필적하는 성능을 보일 수 있다는 것을 확인할 수 있었다.
Lee, Don Hee;Lee, Gwan Hyung;Moon, Jin Yong;Kim, Jeong Joon
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.19
no.2
/
pp.211-219
/
2019
Accomplishing information system, techniques, methodology have been studied continuously and give much help to auditors who are using them. Additionally audit report which is the conclusion of accomplishing ISA(information system audit), has law of a basis and phase with ITA/EA Law(Electronic Government Law). This paper is for better quality of ISA report. But it has more errors about sentence and Grammatical structures. In this paper, to achieve quality improvement objectives, it is necessary to recognize the importance of an audit report by investigating on objectives, functionality, structures and usability of a report firstly, and a legal basis, the presence of report next. Several types of audit reports were chosen and the reports errors were divided into several categories and analyzed. After grasping reasons of those errors, the methods for fixing those errors and check-lists model was provided. And based on that foundation, the effectiveness validation about real audit reports was performed. The necessity for efforts to improve the quality of audit reports was emphasized and further research subject(AI Automatic tool) of this paper conclusion. We also expect this paper to be useful for the organization to improve on ISA in the future.
In the present study, we investigated the grammaticality judgement skills of children with developmental language impairments. The participants included 20 children with language impairments of ages ranging from 7 to 9 years and of IQ's ranging from 71 to 84, and 40 normally developing children. Twenty normal children were matched with the language impaired children in their language ages and the other 20 normal children were matched with the language impaired children in their chronological ages. The children were asked to judge the grammatical correctness of 48 short sentences, half of which were ungrammatical sentences containing incorrect case-markers and the other half were grammatically correct sentences. Four types of case-markers including nominative "i/ga", accusative "ul/lul", locative "e," and instrumental "ro" were systematically changed to generate the ungrammatical sentences. The language impaired children performed worse than both groups of normally developing children in detecting the ungrammatical sentences and in correcting the case-markers of those sentences. In detecting the errors of ungrammatical sentences, the language impaired children exhibited variable performances across the different case-markers.
Foreign learners are not focusing on "적" grammar. Therefore, the lack of materials on "적" is the reason that foreign learners use "적" in real life. In particular, when teaching the Chinese-dependent noun "적", there are some problems in making the Chinese equivalent of "적". more accurately understood by Koreans. In addition, when using grammar through analyzing the grammatical conjunction centered on "적" and the corresponding expression of Chinese, the main reason for the error is that there is no common concept and form in the mother tongue, so there is no consciousness. Therefore, it is difficult for learners to learn similar expressions that are not in Chinese or Korean. Therefore, this study aims to improve specific educational programs for Korean learners and Korean Chinese learners in terms of the time system and the corresponding performance of Chinese grammar and Chinese characters based on the previous version of "적".
Mintaek Seo;Seung-Hoon Na;Minsoo Na;Maengsik Choi;Chunghee Lee
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.608-612
/
2022
딥러닝의 발전 이후, 다양한 분야에서는 딥러닝을 이용해 이전에 어려웠던 작업들을 해결하여 사용자에게 편의성을 제공하고 있다. 하지만 아직 딥러닝을 통해 이상적인 서비스를 제공하는 데는 어려움이 있다. 특히, 음성 인식 작업에서 음성 양식에서 이용 방안에 대하여 다양성을 제공해주는 음성을 텍스트로 전환하는 Speech-To-Text(STT)은 문장 결과가 이상치에 달하지 못해 오류가 나타나게 된다. 본 논문에서는 STT 결과 보정을 문법 교정으로 치환하여 종단에서 올바른 토큰들을 조합하여 성능 향상을 하기 위해 각 토큰 별 품질 평가를 진행하는 모델을 한국어에서 적용하고 성능의 향상을 확인한다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.446-449
/
2020
최근 성공적인 문법 오류 교정 연구들에는 복잡한 인공신경망 모델이 사용되고 있다. 그러나 이러한 모델을 훈련할 수 있는 공개 데이터는 필요에 비해 부족하여 과적합 문제를 일으킨다. 이 논문에서는 적대적 훈련 방법을 적용해 문법 오류 교정 분야의 과적합 문제를 해결하는 방법을 탐색한다. 모델의 비용을 증가시키는 경사를 이용한 fast gradient sign method(FGSM)와, 인공신경망을 이용해 모델의 비용을 증가시키기 위한 변동을 학습하는 learned perturbation method(LPM)가 실험되었다. 실험 결과, LPM은 모델 훈련에 효과가 없었으나, FGSM은 적대적 훈련을 사용하지 않은 모델보다 높은 F0.5 성능을 보이는 것이 확인되었다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.488-491
/
2019
문법 오류 교정은 문법적으로 오류가 있는 문장을 입력 받아 오류를 교정하는 시스템이다. 문법 오류 교정을 위해서는 문법 오류를 제거하는 것과 더불어 자연스러운 문장을 생성하는 것이 중요하다. 이 연구는 적대적 생성 신경망(GAN)을 이용하여 정답 문장과 구분이 되지 않을 만큼 자연스러운 문장을 생성하는 것을 목적으로 한다. 실험 결과 GAN을 이용한 문법 오류 교정은 MaxMatch F0.5 score 기준으로 0.4942을 달성하여 Baseline의 0.4462보다 높은 성능을 기록했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.