• Title/Summary/Keyword: Grain wear

Search Result 142, Processing Time 0.023 seconds

Wear Behavior of Silicon Nitride Depending on Gas Pressure Sintering Time (질화규소의 가스압 소결 (GPS) 시간에 따른 마모거동)

  • Lee, Su-Wan;Kim, Seong-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.83-89
    • /
    • 2000
  • $Si_3N_4$ powder with 2wt% $Al_2O_3$ and 6wt% $Y_2O_3$ additives was sintered by gas pressure sintering (GPS) technique. The variations in the unlubricated wear behavior depending on sintering time were compared. Tribological properties depending on sintering time are associated with fracture toughness as well as flexural strength of materials. When increasing the sintering time, the larger elongated grains were formed as a result of exaggerated grain growth. As the fracture toughness and flexural strength decreased, the wear volume increased. On the basis of these experimental results, the unlubricated wear properties of silicon nitride were found to be governed mostly by both the fracture toughness and the flexural strength of the material.

  • PDF

An Analysis of Compression Wear Designs and Structural Elements (컴프레션웨어의 디자인과 제품구성요소 분석)

  • Lee, Jung Hwa;Jun, Jung Il;Choi, KuengMi
    • Fashion & Textile Research Journal
    • /
    • v.16 no.3
    • /
    • pp.421-433
    • /
    • 2014
  • The aim of this study was to provide compression wear manufacture brands with information needed for product development. 8 tops and 7 bottoms from widely recognized compression wear manufacture brands were selected, and their product structural elements were analyzed, too. The results showed that most compression wear designs were applications of cutting lines designed considering muscle movements of the human body. The average number of cutting lines for patterns and designs were 14 for tops and 15 for bottoms. Different colored material was mainly used on the top for areas that require ventilation or high movement during sports for tops, and for areas that require muscle and joint support during sports for bottoms. The functionality of top materials were found to be stretch, muscle support, moisture absorption and high speed drying, warmth and ventilation for tops, in order of frequency, and stretch, muscle support, moisture absorption and high speed drying, and pressure for bottoms, in order of frequency. Tops were cut in the direction of the lengthwise grain, and bottoms were not only cut in the direction of the lengthwise grain, but also in the direction of the crosswise grain and bias for many products. Tops consisted of an average of 13 organically connected panels, and bottoms consisted of an average of 18 organically connected panels, which was analyzed to improve functionality. The average clothing surface area stretch rate was 85.7% for tops and 70.0% for bottoms, indicating that bottoms were designed to have higher strain rates compared to tops.

A study on the characteristic of grinding by spark-out (불꽃소멸에 의한 연삭특성에 관한 연구)

  • 이연종;김정두
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.120-125
    • /
    • 1993
  • The surface roughness of workpiece is reduced during spark-out. The reduction of roughness is a benefit of spark-out, but spark-out lowers productivity. The characteristics of spark-out are different to those of plunge grinding to which feed is applied. This difference is due to overlapping cutting during spark-out. Effect of spark-out is in proportion to volume of grain wear. This phenomenon is due to different overlapping area. Dressing interval can be enlarged by spark-out, when volume of grain wear is large. In this study, the characteristic of spark-out was studied by spark-out obserbation in various grinding conditions. For this purpose thrust force, spark-out time and surface roughness of workpiece were experimentally investigated in various grinding conditions.

  • PDF

Microstructure and Wear Characteristics of Nickel Reinforced AC8A Composites

  • Kim, Hyung-Jin;Tulugan, Kelimu;Park, Won-Jo
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.50-55
    • /
    • 2015
  • This study takes AC8A, which is a representative light weight alloy as matrix, and nickel as reinforcement for its superior properties. The manufacturing method applied in this study required low pressure for the infiltration of the metal matrix into the reinforcement. Porous Ni was applied as preform. The fabrication was conducted under 0.3 MPa at 600, 700 and 750 degrees centigrade, respectively. Intermetallic compounds Al3 generated between Al and Ni were observed in the composites. Microstructure, Vickers' hardness and wear characteristics of the composites were also investigated. The result indicates that the structures of compounds created at 650 degree centigrade were distributed densely; the grain size of the substances and the compounds was increased with the infiltration temperature.

Evaluation for Grinding Performance of Ceramics (세라믹 재료의 연삭성능 평가)

  • 정을섭;김성청;김태봉;소의열;이근상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.355-359
    • /
    • 2001
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel grinding ceramic materials. Normal component of grinding resistance of $AI_2O_3$ was less then that of $Si_3N_4$ and $ZrO_2$. It is because the resistance for grain shedding is less then that for layer formation. For the case of $Si_3N_4$ and $ZrO_2$, as the grain mesh number of wheel increases, the surface roughness decreases. For the case of $AI_2O_3$, the surface roughness does not decreases. For the case of $Si_3N_4$ and $ZrO_2$, grinding is carried out by abrasive wear processes. For the case of $AI_2O_3$, grinding is carried out by grain shedding process.

  • PDF

Ultra-fine Grained and Dispersion-strengthened Titanium Materials Manufactured by Spark Plasma Sintering

  • Handtrack, Dirk;Sauer, Christa;Kieback, Bernd
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.725-726
    • /
    • 2006
  • Ultra-fine grained and dispersion-strengthened titanium materials (Ti-Si, Ti-C, Ti-Si-C) have been produced by high energy ball milling and spark plasma sintering (SPS). Silicon or/and carbon were milled together with the titanium powder to form nanometer-sized and homogeneously distributed titanium silicides or/and carbides as dispersoids, that should prevent grain coarsening during the SPS compaction and contribute to strengthening of the material. The microstructures and the mechanical properties showed that strength, hardness and wear resistance of the sintered materials have been significantly improved by the mechanisms of grain refinement and dispersion strengthening. The use of an organic fluid as carrier of the dispersoid forming elements caused a significant increase in ductility.

  • PDF

Abrasiveness Behavior of Counterpart Sliding Against Titanium Carbide Based Metal Matrix Composite (탄화 티타늄 금속기 복합재에 대한 상대재의 마모거동)

  • Lee, Jeong-Keun
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.450-454
    • /
    • 2006
  • Wear of steel plate was measured during unlubricated sliding against TiC composites. These composites consist of round TiC grains and steel matrix. TiC grain itself exhibits low surface roughness and round shape, which does not bring its counterpart into severe damage from friction. In our work a classical experimental design was applied to find out a dominant factor in counterpart wear. The analysis of the data showed that only the applied load has a significant effect on the counterpart wear. Wear rate of counterpart increased non-linearly with applied load. Amount of wear was discrepant from expectation of being in proportion to the load by analogy with friction force. Our experimental result from treating matrix variously revealed bimodal wear behavior between the composites and counterpart where a mode seems to result from the special lubricant characteristic of TiC grains, and the other is caused by metal-to-metal contact. The two wear mechanisms were discussed.

An Experimental Study on the Wear of Alumina Grinding Wheels (알루미나 연삭숫돌의 마모에 관한 실험적 연구)

  • Cho, Ki-Su;Lee, Jong-Chan;Choi, Hwan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.113-118
    • /
    • 1994
  • An experimental investigation on the wear of alumina grinding wheel is presented. The experiments consist of the measurements of fracture strength of the abrasive grains, grinding forces, and the area of wear flats of grinding wheels. Microscopic examinations of abrasive grains were also carried out to observe the progress of wheel wear. the results show that the 32A grain, which has relatively lower fracture strength, wears out faster than 5SS and 5SG. The wheel wear occurs much faster in wet grinding than in dry grinding. It has also been found that the grinding forces increase logarithmically with increasing wear flats.

  • PDF

A Study on Wear Characteristics of Degraded Stainless Steel (열화된 스테인리스강의 마모특성에 관한 연구)

  • Cho, Sung-Duck;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.21-30
    • /
    • 2017
  • This study deals with the characteristics of degraded stainless steel. Stainless steel is heat treated to ensure mechanical properties when designing or manufacturing machinery parts or equipment. In this study, the mechanical properties and wear characteristics of three kinds of stainless steels after artificially heat-treated at 753 K~993 K, where chrome depletion occurs near the grain boundary, were evaluated. The microstructure and fracture surface were also observed. From the results, friction coefficient and wear loss decreased with increasing the heat treatment temperature regardless of the type of stainless steel. Also, as the tensile strength increased, the friction coefficient and wear loss decreased. Wear loss showed proportional to a tendency to increase with increasing friction coefficient.