• Title/Summary/Keyword: Grain v1

Search Result 540, Processing Time 0.027 seconds

Influence of Cu Doping and Heat Treatments on the Physical Properties of ZnTe Films (Cu 도핑과 열처리가 ZnTe 박막의 물성에 미치는 영향)

  • Choe, Dong-Il;Yun, Se-Wang;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.173-180
    • /
    • 1999
  • Thermally evaporated ZnTe films were investigated as a back contact material for CdS/CdTe solar cells. Two deposition methods, coevaporation and double-layer methods, were used for Cu doping in ZnTe films. ZnTe layers (0.2$\mu\textrm{m}$ thick) were deposited either on glass or on CdS/CdTe substrates without intentional heating of the substrates. Post-deposition annealing was performed at 200,300 and $400^{\circ}C$ for 3,6 and 9 minutes, respectively. Band gap of 2.2eV was measured for both undoped and doped films and a slight change in the shape of absorption spectra was observed in Cu-doped samples after annealing at $400^{\circ}C$. The resistivity of as-deposited ZnTe decreased from 10\ulcorner~10\ulcornerΩcm down to 10\ulcornerΩcm as Cu concentration increased from 0 to 14 at.%. There was not a noticeable change in less of annealing temperature up to $300^{\circ}C$ whereas films annealed at $400^{\circ}C$ revealed hexagonal (101) orientations as well. Some of Cu-doped ZnTe revealed x-ray diffraction (XRD) peaks related with Cu\ulcornerTe(x=1.75~2). Grain growth was observed from about 20nm in as-deposited films to 50nm after annealing at $400^{\circ}C$ by scanning electron microscopy (SEM). Cu distribution in ZnTe films was not uniform according to Auger electron spectroscopy (AES) measurements.

  • PDF

Microstructure and Varistor Characteristics of ZnO-Pr6O11-CoO-Cr2O3-Dy2O3-Based Varistors (ZnO-Pr6O11-CoO-Cr2O3-Dy2O3계 세라믹스의 미세구조 및 바리스터 특성)

  • 남춘우;박종아;김명준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.897-901
    • /
    • 2003
  • The microstructure and varistor characteristics of ZnO-Pr$_{6}$O$_{11}$-CoO-Cr$_2$O$_3$-Dy$_2$O$_3$(ZPCCD)-based ceramics were investigated with Dy$_2$O$_3$ content in the range of 0.0∼2.0 mol%. As Dy$_2$O$_3$ content is increased, the average grain size was decreased in the range of 18.6∼4.7 $\mu$m and the density was decreased in the range of 5.53∼4.34 g/cm$^3$. While, the varistor voltage was increased in the range of 39.4∼436.6 V/mm and the nonlinear exponent was in the range of 4.5-66.6 with increasing Dy$_2$O$_3$ content. The addition of Dy$_2$O$_3$ highly enhanced the nonlinear properties of varistors, compared with the ceramics without Dy$_2$O$_3$ Particularly, the ceramics with Dy$_2$O$_3$ content of 0.5 mol% exhibited the highest nonlinearity, in which the nonlinear exponent is 66.6 and the leakage current is 1.2 $\mu$A.A.A.

Determination by Neutron Analysis of Mercury Residues in Foodstuffs (방사화분석법에 의한 식품중의 잔류수은의 정량)

  • Chun, Sea-Yull
    • Korean Journal of Food Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.135-143
    • /
    • 1971
  • In order to find out the degree of mercury contamination of common foodstuffs a series of determination was carried out by a highly sensitive activation analysis and the following results were obtained. 1. Polished rice contained 0.050 ppm of mercury whereas rice bran had 0.095 ppm mercury which was found in other grain in lesser degree. 2. Vegetables and fruits also contained $0.035{\sim}0.190\;ppm$ of mercury with relatively small variations from sample except persimmon which had a considerably higher amount of mercury. 3. Soybean sprout contained an unexpectantly high amount of mercury. 4. Of the animal products chicken and egg contained more mercury than the meat.

  • PDF

Cyclic Voltammetry Study on Electrodeposition of CuInSe2 Thin Films (Cyclic Voltammetry를 이용한 CuInSe2 박막의 전기화학적 전착 연구)

  • Hong, Soonhyun;Lee, Hyunju;Kim, Yangdo
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.638-642
    • /
    • 2013
  • Chalcopyrite $CuInSe_2$(CIS) is considered to be an effective light-absorbing material for thin film photovoltaic solar cells. CIS thin films have been electrodeposited onto Mo coated and ITO glass substrates in potentiostatic mode at room temperature. The deposition mechanism of CIS thin films has been studied using the cyclic voltammetry (CV) technique. A cyclic voltammetric study was performed in unitary Cu, In, and Se systems, binary Cu-Se and In-Se systems, and a ternary Cu-In-Se system. The reduction peaks of the ITO substrate were examined in separate $Cu^{2+}$, $In^{3+}$, and $Se^{4+}$ solutions. Electrodeposition experiments were conducted with varying deposition potentials and electrolyte bath conditions. The morphological and compositional properties of the CIS thin films were examined by field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). The surface morphology of as-deposited CIS films exhibits spherical and large-sized clusters. The deposition potential has a significant effect on the film morphology and/or grain size, such that the structure tended to grow according to the increase of the deposition potential. A CIS layer deposited at -0.6 V nearly approached the stoichiometric ratio of $CuIn_{0.8}Se_{1.8}$. The growth potential plays an important role in controlling the stoichiometry of CIS films.

Internal Flow Characteristics of Simulated Dual Pulse Rocket Motor by Using the Hot Gas and Cold Gas (Hot Gas와 Cold Gas를 이용한 모사 이중펄스 로켓 추진기관의 내부 유동 특성)

  • Cho, Kihong;Park, Jungho;Kim, Euiyong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 2015
  • Dual pulse rocket motor is a variant of solid rocket motor with two propellant grain separated by a pulse separation device. The major performance of such a rocket motor is influenced by the change in the hole area of pulse separation device to nozzle throat area ratio. In this study, we performed flow analysis to investigate the internal flow characteristics according to the pulse separation device hole area to nozzle throat area ratio change. Gases used flow analysis were used combustion gas of HTPB/AP composite propellant and nitrogen gas. Flow analysis results of the dual pulse rocket motor were validated by comparison with experimental results of pneumatics. Commercial CFD code ANSYS FLUENT 14.5 is used in this study to simulate flow analysis.

Effect of Ag interlayer on the optical and electrical properties of ZnO thin films (Ag 중간층 두께에 따른 ZnO 박막의 광학적, 전기적 특성 연구)

  • Kim, Hyun-Jin;Jang, Jin-Kyu;Choi, Jae-Wook;Lee, Yeon-Hak;Heo, Sung-Bo;Kong, Young-Min;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.2
    • /
    • pp.91-95
    • /
    • 2022
  • ZnO single layer (60 nm thick) and ZnO with Ag interlayer (ZnO/Ag/ZnO; ZAZ) films were deposited on the glass substrates by using radio frequency (RF) and direct current (DC) magnetron sputter to evaluate the effectiveness of Ag interlayer on the optical visible transmittance and the conductivity of the films. In the ZAZ films, the thickness of ZnO layers was kept at 30 nm, while the Ag thickness was varied as 5, 10, 15 and 20 nm. In X-ray diffraction (XRD) analysis, ZnO films show the (002) diffraction peak and ZAZ films also show the weak ZnO (002) peak and Ag (111) diffraction peak. As a thickness of Ag interlayer increased to 20 nm, the grain size of the Ag films enlarged to 11.42 nm and the optical band gap also increased from 4.15 to 4.22 eV with carrier concentration increasing from 4.9 to 10.5×1021 cm-3. In figure of merit measurements, the ZAZ films with a 10 nm thick Ag interlayer showed the higher figure of merit of 4.0×10-3 Ω-1 than the ZnO single layer and another ZAZ films. From the experimental result, it is assumed that the Ag interlayer enhanced effectively the opto-electrical performance of the ZAZ films.

Feasibility study of CdZnTe and CdZnTeSe based high energy X-ray detector using linear accelerator

  • Beomjun Park;Juyoung Ko;Jangwon Byun;Byungdo Park ;Man-Jong Lee ;Jeongho Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2797-2801
    • /
    • 2023
  • CdZnTeSe (CZTS) has attracted attention for applications in X- and gamma-ray detectors owing to its improved properties compared to those of CdZnTe (CZT). In this study, we grew and processed single crystals of CZT and CZTS using the Bridgeman method to confirm the feasibility of using a dosimeter for high-energy X-rays in radiotherapy. We evaluated their linearity and precision using the coefficient of determination (R2) and relative standard deviation (RSD). CZTS showed sufficient RSD values lower than 1.5% of the standard for X-ray dosimetry, whereas CZT's RSD values increased dramatically under some conditions. CZTS exhibited an R2 value of 0.9968 at 500 V/cm, whereas CZT has an R2 value of 0.9373 under the same conditions. The X-ray response of CZTS maintains its pulse shape at various dose rates, and its properties are improved by adding selenium to the CdTe matrix to lower the defect density and sub-grain boundaries. Thus, we validated that CZTS shows a better response than CZT to high-energy X-rays used for radiotherapy. Further, the applicability of an onboard imager, a high-energy X-ray (>6 MV) image, is presented. The proposed methodology and results can guide future advances in X-ray dose detection.

Transcriptome Profiling of Differentially Expressed Genes in Cowpea (Vigna unguiculata L.) Under Salt Stress

  • Byeong Hee Kang;Woon Ji Kim;Sreepama Chowdhury;Chang Yeok Moon;Sehee Kang;Bo-Keun Ha
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.261-261
    • /
    • 2022
  • Cowpea [Vigna unguiculata (L.) Walp] is one of the most important grain legumes that enhance soil fertility and is well-adapted to various abiotic stress. Also, it is cultivated worldwide as a tropical annual crop, and the semi-arid regions are known as the main cowpea-produced regions. However, accumulation of soil salinity induced by low rainfall in these regions is reducing crop yields and quality. In general, plants exposed to soil salinity cause an accumulation of high ion chloride, which leads to the degradation of root and leaf proteins. In this study, we identified candidate genes associated with salinity tolerance through an analysis of differentially expressed genes (DEGs) in four cowpea germplasms with contrasting salinity tolerance. A total of 553,776,035 short reads were obtained using the Illumina Novaseq 6000 platform for RNA-Seq, which were subsequently aligned to the reference genome of cowpea Vunguiculata v1.2. A total of9,806 DEGs were identified between NaCl treatment and control of four cowpea germplasms. Among these DEGs, functions related to salt stress such as calcium transporter and cytochrome-450 family were associated with salt stress. In GO analysis and KEGG analysis, these DEGs were enriched in terms such as the "phosphorylation", ''extracellular region", and "ion binding". These RNA-seq results will improve the understanding of the salt tolerance of cowpea and can be used as useful basic data for molecular breeding technology in the future.

  • PDF

Dielectric properties of ($Sr_{0.50}Pb_{0.25}Ba_{0.25}$)$TiO_3$-$Bi_2$$Ti_3$$O_{9}$ ceramics for the high-voltage capacitor (고전압 캐패시터용 ($Sr_{0.50}/$Pb_{0.25}$/$Ba_{0.25}$)$TiO_3$-$Bi_2$$Ti_3O_{9}$ 세라믹의 유전특성)

  • 김세일;정장호;이영희;배선기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.17-20
    • /
    • 1993
  • In this paper, the (1-x)($Sr_{0.50}$$Pb_{0.25}$$Ba_{0.25}$)$TiO_3$-x $Bi_2$$Ti_3$$O_{9}$(x=0,4,6,8[mol.%]) ceramics with paraelectric properties were, fabricated by mixed oxide method. The dielectric and structural properties of ceramics were studied with sintering temperature and addition of $Bi_2Ti_3O_{9}$, and the application for the high - voltage capacitor was investigated. In the specimens with sintering at 1350[$^{\circ}C$], sintered density was showed the highest value of 5.745[g/cm$^3$]. Increasing of sintering temperature, average grain size was increased. The specimen. ($Sr_{0.50}$$Pb_{0.25}$$Ba_{0.25}$)$TiO_3$sintered at 1350[$^{\circ}C$] showed good dielectric properties and breakdown voltage was showed the highest value of 200[kV]. Temperature coefficient of capacitance was stabilized in specimens added $Bi_2Ti_3O_{9}$ Sintered density. dielectric properties and breakdown voltage ware decreased with increasing the contents of $Bi_2Ti_3O_{9}$.

Effects of Sodium and Gallium on Characteristics of CIGS Thin Films and CdS/CIGS Solar Cells by Co-evaporation Method (Na확산과 Ga첨가에 따른 동시진공증발법으로 제조된 CIGS 박막과 CdS/CIGS 태양전지의 특성)

  • Kwon, S.H.;Lee, J.C.;Kang, K.H.;Kim, S.K.;Yoon, K.H.;Song, J.S.;Lee, D.Y.;Ahn, B.T.
    • Solar Energy
    • /
    • v.20 no.2
    • /
    • pp.43-54
    • /
    • 2000
  • We prepared and characterized $Cu(In_{1-x}Ga_x)Se_2$(CIGS) films using a elemental co-evaporation method for absorbing layer of high efficiency thin film solar cells. The CIGS films deposited on a soda-lime glass exhibited low resistivity because of higher carrier concentration. Na was accumulated at the CIGS surface and the 0 and Se were also accumulated at the surface, suggesting that oxidation is a driving force of Na accumulation. The structure of CIGS film was modified or a secondary phase was formed in the Cu-poor CIGS bulk films probably due to the incorporation of Na into Cu vacancy sites. As the Ga/(In+Ga) ratio increased, the diffraction peaks of $Cu(In_{1-x}Ga_x)Se_2$ films were shifted to larger angle and splitted, and the grain size of $Cu_{0.91}(In_{1-x}Ga_x)Se_2$ films became smaller. All $Cu_{0.91}(In_{1-x}Ga_x)Se_2$ films showed the p-type conductivity regardless of the Ga/(In+Ga) ratio. Ag/n-ZnO/i-ZnO/CdS/$Cu_{0.91}(In_{0.7}Ga_{0.3})Se_2$/Mo solar cells were fabricated. The currently best efficiency in this study was 14.48% for $0.18cm^2$ area ($V_{oc}=581.5mV,\;J_{sc}=34.88mA$, F.F=0.714).

  • PDF