• Title/Summary/Keyword: Grain temperature

Search Result 2,949, Processing Time 0.032 seconds

Effects of temperature and photoperiod on the growth of tatary buckwheat(Fagopyrum tataricum) (온도 및 일장처리가 쓴메밀의 생육에 미치는 영향)

  • Yun, Jin-Yeong;Chang, Kwang-Jin;Park, Jong-In;Bae, Won-Ho;Park, Cheol-Ho;Park, Byoung-Jae
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.6 no.1
    • /
    • pp.41-49
    • /
    • 2004
  • This study was carried out to investigate the effects of temperature and photoperiod on the growth of Fagopyrum tataricum. It showed a tendency to promote the germination rate and plant height of tatary buckwheat under high temperature. Plant height and number of leaves were promoted in the order of 25>20>15>30℃ under the different temperature after 30 days of the planting. In the 10, 12, 14hr photoperiods at 20℃, plant height, number of leaves and dry weight were increased as much as photoperiod became long except by 16hr. Rutin contents was not regular both common and tatary buckwheat under the photoperiods. The rutin content in leaves was higher than stem. Compared to yield of tatary and common buckwheat, plant height, number of leaves, number of branch and stem diameter of tatary buckwheat increased more than common buckwheat. Especially, number of leaves was increased about 2.5 times more than common buckwheat. And there was a difference in about 2.1 times in grain weight and about 5.4 times in number of grains. Rutin content of plant parts was higher in the order of leaf>stem>grain in common buckwheat at the harvest. But it was higher with order of leaf>grain>stem in tatary buckwheat. Rutin content was 1469.8mg/100g in grain of tatary buckwheat. It was about 60 times higher than 22mg/100g in grain of common buckwheat.

Association of Grain Filling Duration and Leaf Activity with the Grain Yield in Field-Grown Temperate Japonica Rice

  • Yang, Woonho;Kang, Shingu;Park, Jeong-Hwa;Kim, Sukjin;Choi, Jong-Seo;Heu, Sunggi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.120-130
    • /
    • 2018
  • Improvement in rice grain yield has been approached by means of genetic amendment, cultural management, and environmental adaptation. Subjecting the plant during the grain filling period to an appropriate environment plays a key role in achieving a high grain yield in temperate rice. Field experiments were conducted for two consecutive years with two planting times to assess the relations among grain filling traits, loss of leaf activity during the ripening period, and the grain yield of temperate japonica rice with wide environmental variation. Higher grain yields were attained in 2017 than in 2016 and with late planting than with early planting. The high grain yield accompanied a comparatively lesser increase in grain weight at the early filling stage but more gain in grain weight occurred during the late filling stage. Final grain weight correlated positively with grain filling duration but negatively with grain filling rate. Extended grain filling duration was associated with higher cumulative temperature and cumulative solar radiation for an effective grain filling period. The reduction in SPAD value ${\times}$ leaf dry weight from heading to harvest significantly correlated with final grain dry weight in a positive manner. No significant relation was found between grain filling duration and the decrease in SPAD value ${\times}$ leaf dry weight during the grain filling period. The results suggest that grain filling duration and loss of leaf activity during ripening independently contribute to environmentally induced yield improvement in temperate japonica rice.

Effects of CaCO3 on the Defects and Grain Boundary Properties of ZnO-Co3O4-Cr2O3-La2O3 Ceramics (ZnO-Co3O4-Cr2O3-La2O3 세라믹스의 결함과 입계 특성에 미치는 CaCO3의 영향)

  • Hong, Youn-Woo;Ha, Man-Jin;Paik, Jong-Hoo;Cho, Jeong-Ho;Jeong, Young-Hun;Yun, Ji-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.307-312
    • /
    • 2018
  • Liquid phases in ZnO varistors cause more complex phase development and microstructure, which makes the control of electrical properties and reliability more difficult. Therefore, we have investigated 2 mol% $CaCO_3$ doped $ZnO-Co_3O_4-Cr_2O_3-La_2O_3$ (ZCCLCa) bulk ceramics as one of the compositions without liquid phase sintering additive. The results were as follows: when $CaCO_3$ is added to ZCCLCa ($644{\Omega}cm$) acting as a simple ohmic resistor, CaO does not form a secondary phase with ZnO but is mostly distributed in the grain boundary and has excellent varistor characteristics (high nonlinear coefficient ${\alpha}=78$, low leakage current of $0.06{\mu}A/cm^2$, and high insulation resistance of $1{\times}10^{11}{\Omega}cm$). The main defects $Zn_i^{{\cdot}{\cdot}}$ (AS: 0.16 eV, IS & MS: 0.20 eV) and $V_o^{\bullet}$ (AS: 0.29 eV, IS & MS: 0.37 eV) were found, and the grain boundaries had 1.1 eV with electrically single grain boundary. The resistance of each defect and grain boundary decreases exponentially with increasing the measurement temperature. However, the capacitance (0.2 nF) of the grain boundary was ~1/10 lower than that of the two defects (~3.8 nF, ~2.2 nF) and showed a tendency to decrease as the measurement temperature increased. Therefore, ZCCLCa varistors have high sintering temperature of $1,200^{\circ}C$ due to lack of liquid phase additives, but excellent varistor characteristics are exhibited, which means ZCCLCa is a good candidate for realizing chip type or disc type commercial varistor products with excellent performance.

Fatigue Life of the Repair TIG Welded Hastelloy X Superalloy

  • SIHOTANG, Restu;CHOI, Sang-Kyu;PARK, Sung-Sang;BAEK, Eung-Ryul
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.26-30
    • /
    • 2015
  • Hastelloy X in this study was applied in jet engine F-15 air fighter as shroud to isolate the engine from outer skin. After 15 years operation at elevated temperature the mechanical properties decreased gradually due to the precipitation of continues second phases in the grain boundaries and precipitated inside the grain. The crack happened at the edge of the shroud due to the thermal and mechanical stress from jet engine. Selective TEM analysis found that the grain boundaries consist of $M_{23}C_6$ carbide, $M_6$ Ccarbide and small percentage of sigma(${\sigma}$) phase. Furthermore, it was confirmed the nano size of ${\sigma}$ and miu (${\mu}$) phase inside the grain. In this study, it was investigated the microstructure of the degraded shroud component and HAZ of repair welded shroud. In the HAZ, it was observed the dissolution of the $M_{23}C_6$ carbides and smaller precipitates, the migration of the undissolved larger $M_{23}C_6$ carbide and $M_6$ Ccarbide. It is also observed the liquation due to the simply melt of the segregated precipitates in the grain boundaries. Interestingly, the segregated second phases which simply melt in the grain boundaries more easily happened at higher heat input welding condition. High temperature tensile test was done at $300^{\circ}C$, $700^{\circ}C$ and $900^{\circ}C$. It was obtained that the toughness of welded sample is lower compare to the non-welded sample. The solution heat treatment at $1170^{\circ}C$ for 5 minutes was suggested to obtain a better mechanical properties of the shroud. The high cycle fatigue number of the repair welded shroud shows a much lower compare to the shroud. In addition, the high cycle fatigue number at room temperature after solution heat treatment was almost double compare to the before solution heat treatment under 420-500MPa stress amplitude. However, the high cycle fatigue number of repaired welded sample was shown a much lower compare to the non- welded shroud and solution treated shroud. One of the main reasons to decrease the tensile strength and the high cycle fatigue properties of the repair welded shroud is the formation of the liquid phase in HAZ.

A $2{\times}2$ Microstrip Patch Antenna Array for Moisture Content Measurement of Paddy Rice (산물벼 함수율 측정을 위한 $2{\times}2$ 마이크로스트립 패치 안테나 개발)

  • 김기복;김종헌;노상하
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.97-106
    • /
    • 2000
  • To develop the grain moisture meter using microwave free space transmission technique, a 10.5GHz microwave signal with the power of 11mW generated by an oscillar with a dielectric resonator is transmitted to an isolator and radiated from a transmitting $2{\times}2$ microstrip patch array antenna into the sample holder filled with the 12 to 26%w.b. of Korean Hwawung paddy rice. the microwave signal, attenuated through the grain with moisture, is collected by a receiving $2{\times}2$ microstrip patch array antenna and detected using a Shottky diode with excellent high frequency characteristic. A pair of light and simple microstrip patch array antenna for measurement of grain moisture content is designed and implemented on atenflon substrate with trleative dielectric constant of 2.6 and thickness of 0.54 by using Ensemble ver. 4.02 software. The aperture of microstrip patch arrays is 41 mm width and 24mm high. The characteristics of microstrip patch antenna such as grain. return loss, and bandwidth are 11.35dBi, -38dB and 0.35GHz($50^{\circ}$ at far-field pattern of E and H plane. The width of the sample holder is large enough to cover the signal between the antennas temperature and bulk density respectively. The calibration model for measurement of grain moisture content is proposed to reduce the effects of fluectuations in bulk density and temperature which give serious errors for the measurements . From the results of regression analysis using the statistically analysis method, the moisture content of grain samples (MC(%)) is expressed in terms of the output voltage(v), temperature (t), and bulk density of samples(${\rho}b$)as follows ;$$MC(%)\;=\;(-3.9838{\times}10^{-8}{\times}v^{3}+8.023{\times}10^{-6}{\times}v^{2}-0.0011{\times}v-0.0004{\times}t+0.1706){\frac{1}{{\rho}b}}{\times}100$ Its determination coefficient, standard error of prediction(SEP) and bias were found to be 0.9855, 0.479%w.b. and -0.0.369 %w.b. respectively between measured and predicted moisture contents of the grain samples.

  • PDF

Influence of Nb Addition and Austenitizing Temperature on the Hardenability of Low-Carbon Boron Steels (저탄소 보론강의 경화능에 미치는 Nb 첨가와 오스테나이트화 온도의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.577-582
    • /
    • 2015
  • The present study is concerned with the influence of niobium(Nb) addition and austenitizing temperature on the hardenability of low-carbon boron steels. The steel specimens were austenitized at different temperatures and cooled with different cooling rates using dilatometry; their microstructures and hardness were analyzed to estimate the hardenability. The addition of Nb hardly affected the transformation start and finish temperatures at lower austenitizing temperatures, whereas it significantly decreased the transformation finish temperature at higher austenitizing temperatures. This could be explained by the non-equilibrium segregation mechanism of boron atoms. When the Nb-added boron steel specimens were austenitized at higher temperatures, it is possible that Nb and carbon atoms present in the austenite phase retarded the diffusion of carbon towards the austenite grain boundaries during cooling due to the formation of NbC precipitate and Nb-C clusters, thus preventing the precipitation of $M_{23}(C,B)_6$ along the austenite grain boundaries and thereby improving the hardenability of the boron steels. As a result, because it considerably decreases the transformation finish temperature and prohibits the nucleation of proeutectoid ferrite even at the slow cooling rate of $3^{\circ}C/s$, irrespective of the austenitizing temperature, the addition of 0.05 wt.% Nb had nearly the same hardenability-enhancing effect as did the addition of 0.2 wt.% Mo.

An Extremely Low Temperature Properties of Wrought Aluminum Alloys (가공용 알루미늄 합금의 극저온 특성)

  • Jung, Chan-Hoi;Kim, Soon-Kook;Lee, Jun-Hee;Lee, Hae-Woo;Jang, Chang-Woo
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.192-197
    • /
    • 2007
  • The effects of immersion time in the liquid nitrogen on the behavior of aluminum alloys used for the hydrogen storage tank of auto-mobile at cryogenic temperature were investigated. With increasing immersion time in the liquid nitrogen, the elongation of AI 5083 alloy at cryogenic temperature decreased because of non-uniform fracture of precipitates on the grain boundary, and the serration also occurred because of discontinuous slip due to rapid decreasing of the specific heat. The mechanical properties of AI 6061 alloy at cryogenic temperature were characterized by uniformed yield strength, tensile strength and elongation regardless of the immersion time in the liquid nitrogen. These mechanical properties of aluminum alloys at cryogenic temperature were interpreted by the strength of grain boundary and the slip deformation behavior.

Effect of Sintering Temperature on Microstructure, Electrical and Dielectric Properties of (V, Mn, Co, Dy, Bi)-Codoped Zinc Oxide Ceramics

  • Nahm, Choon-Woo
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.37-42
    • /
    • 2015
  • The effect of sintering temperature on the microstructure, electrical and dielectric properties of (V, Mn, Co, Dy, Bi)-codoped zinc oxide ceramics was investigated in this study. An increase in the sintering temperature increased the average grain size from 4.7 to $10.4{\mu}m$ and decreased the sintered density from 5.47 to $5.37g/cm^3$. As the sintering temperature increased, the breakdown field decreased greatly from 6027 to 1659 V/cm. The ceramics sintered at $900^{\circ}C$ were characterized by the highest nonlinear coefficient (36.2) and the lowest low leakage current density ($36.4{\mu}A/cm^2$). When the sintering temperature increased, the donor concentration of the semiconducting grain increased from $2.49{\times}10^{17}$ to $6.16{\times}10^{17}/cm^3$, and the density of interface state increased from $1.34{\times}10^{12}$ to $1.99{\times}10^{12}/cm^2$. The dielectric constant increased greatly from 412.3 to 1234.8 with increasing sintering temperature.

Microstructure Analysis with Preparation Condition of Electrolyte Membrane for High Temperature Electrolysis (고온 수전해 전해질 막의 제막조건에 따른 미세구조 분석)

  • Choi, Ho-Sang;Son, Hyo-Seok;Hwang, Gab-Jin;Bae, Ki-Kwang
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.2
    • /
    • pp.141-148
    • /
    • 2006
  • This study was carried out to analyze the microstructure characteristics of electrolyte membrane through XRD, SEM and AC impedance measurement for using in high temperature steam electrolysis(HTE). It was investigated that thermal stability and electric characteristics by sintering condition using dry and wet process, and confirmed growth of particle and density change by sintering temperature. The sintering temperature and behavior had an effect on the relative density of the ceramic and the average grain size. The more amount of dispersant in organic compound increase, the more the density increased. But the binder was shown opposite phenomenon. It was analyzed that electrolyte resistance and electrical characteristics using AC impedance. The electrical properties of YSZ grain boundary changed with the sintering temperature.

PTCR Characteristics of BaTiO$_3$Thin Films made by rf/dc Magnetron Sputter Technique

  • Song, Min-Jong;So, Byung-Moom;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.2
    • /
    • pp.28-31
    • /
    • 2000
  • BaTiO$_3$cerameic thin films doped with Mn were manufactured by rf/dc magnetron sputter technique. We have investigated crystal structure, surface morphology and PRCR(positive-temperature coefficient of resistance) characteristics of the specimen depending on second heat-treatment temperature. Second heat treatment of the specimen were performed in the temperature range of 400 to 1350$\^{C}$ X-ray diffraction patterns of BaTiO$_3$ thin films show that the specimen heat treated below 600$\^{C}$ is an amorphous phase and the one heat treated above 1100$\^{C}$ forms a poly-crystallization . In this specimen heat-treated at 1300$\^{C}$, a lattice constant ratio(c/a) was 1.188. Scanning electron microscope(SEM) image of BaTiO$_3$ thin films of the specimen heat treated in between 900 and 1100$\^{C}$ shows a grain growth. At 1100$\^{C}$, the specimen stops grain-growing and becomes a poly-crystallization . A resistivity-temperature characteristics of the specimen depends on the doping concentrations of Mn. A resistivity ratio between the value at room temperature and the one above Curie temperature was 10$^4$ for pure BaTiO$_3$ thin films and 10$\^$5/ fo BaTiO$_3$ : additive 0.127mol% MnO

  • PDF