• Title/Summary/Keyword: Grain temperature

Search Result 2,930, Processing Time 0.031 seconds

A New Wheat Variety, "Sukang" with Good Noodle Quality, Resistant to Winter Hardiness and Pre-harvest Sprouting (내한 내수발아성 제면용 밀 신품종 "수강밀")

  • Park, Chlul Soo;Heo, Hwa-Young;Kang, Moon-Suk;Kim, Hong-Sik;Park, Hyung-Ho;Park, Jong-Chul;Kang, Chon-Sik;Kim, Hag-Sin;Cheong, Young-Keun;Park, Ki-Hun
    • Korean Journal of Breeding Science
    • /
    • v.41 no.1
    • /
    • pp.44-50
    • /
    • 2009
  • "Sukang", a winter wheat (Triticum aestivum L.) cultivar was developed by the National Institute of Crop Science, RDA. It was derived from the cross "Suwon266" / "Asakaze" during 1994. "Sukang" was evaluated as "Iksan312" in Advanced Yield Trial Test in 2005. It was tested in the regional yield trial test between 2006 and 2008. "Sukang" is an awned, semi-dwarf and hard winter wheat, similar to "Keumkang" (check cultivar). The heading and maturing date of "Sukang" were similar to "Keumkang". Culm and spike length of "Sukang" were 90 cm and 8.1 cm, longer culm length and similar spike length compared to "Keumkang" (80 cm and 7.9 cm, respectively). "Sukang" had similar test weight (819 g/L) and lower 1,000-grain weight (40.2 g) than "Keumkang" (813 g/L and 44.9 g, respectively). "Sukang" showed resistance to winter hardiness and pre-harvest sprouting, which lower withering rate on the high ridge (4.5%) and rate of pre-harvest sprouting (0.2%) than "Keumkang" (21.9% and 30.4%, respectively). "Sukang" had lower flour yield (71.1%) and higher ash content (0.45%) than "Keumkang" (74.1% and 0.42%, respectively). "Sukang" showed lower lightness (89.13) and higher yellowness (10.93) in flour color than "Keumkang" (90.02 and 9.28, respectively). It showed higher protein content (12.8%) and gluten content (11.1%) and lower SDS-sedimentation volume (56.8 ml) and mixing time of mixograph (2.6 min) than "Keumkang" (11.9%, 10.2%, 62.3 ml and 4.7 min, respectively). Fermentation properties, amylose content and pasting properties of "Sukang" were similar to "Keumkang". "Sukang" showed different compositions in high molecular weight glutenin subunits (HMW-GS, $2^{\ast}$, 13+16, 2+12) and puroindolines (pina-1b/pinb-1a) compared to "Keumkang" ($2^{\ast}$, 7+8, 5+10 in HMW-GS and Pina-1a/Pinb-1b in puroindolines, respectively). "Sukang" showed lower hardness (4.53 N) and similar springiness and cohesiveness of cooked noodles (0.94 and 0.63) compared to "Keumkang" (4.65 N, 0.93 and 0.64, respectively). Average yield of "Sukang" in the regional adaptation yield trial was 5.34 MT/ha in upland and 4.72 MT/ha in paddy field, which was 4% and 1% lower than those of "Keumkang" (5.55 MT/ha and 4.77 MT/ha, respectively). "Sukang" would be suitable for the area above $-10^{\circ}C$ of daily minimum temperature in January in Korean peninsula.

A New White Wheat Variety, "Hanbaek" with Good Noodle Quality, High Yield and Resistant to Winter Hardiness (내한 다수성 백립계 제면용 밀 신품종 "한백밀")

  • Park, Chlul-Soo;Heo, Hwa-Young;Kang, Moon-Suk;Kim, Hong-Sik;Park, Hyung-Ho;Park, Jong-Chul;Kang, Chon-Sik;Kim, Hag-Sin;Cheong, Young-Keun;Park, Ki-Hun
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.130-136
    • /
    • 2009
  • "Hanbaek", a white winter wheat (Triticum aestivum L.) cultivar was developed by the National Institute of Crop Science, RDA. It was derived from the cross "Shan7859/Keumkang"//"Guamuehill" during 1996. "Hanbaek" was evaluated as "Iksan314" in Advanced Yield Trial Test in 2005. It was tested in the regional yield trial between 2006 and 2008. "Hanbaek" is an awned, semi-dwarf and hard winter wheat, similar to "Keumkang" (check cultivar). The heading and maturing date of "Hanbaek" were similar to that of "Keumkang". Culm and spike length of "Hanbaek" were 89 cm and 9.0 cm, which longer culm length and spike length than "Keumkang" (80 cm and 7.9 cm, respectively). "Hanbaek" had lower test weight (797 g) and higher 1,000-grain weight (47.7 g) than "Keumkang" (813 g and 44.9 g, respectively). "Hanbaek" showed resistance to winter hardiness and susceptible to pre-harvest sprouting, which lower withering rate on the high ridge (4.4%) and higher rate of pre-harvest sprouting (47.9%) than "Keumkang" (21.9% and 30.4%, respectively). "Hanbaek" had similar flour yield (74.4%) to "Keumkang" (74.1%) and higher ash content (0.45%) than "Keumkang" (0.42%). "Hanbaek" showed lower lightness (89.13) and similar redness and yellowness (-0.87 and 10.93) in flour color than "Keumkang" (90.02, -1.23 and 9.28, respectively). It showed similar protein content (12.8%) SDS-sedimentation volume (63.0 ml) and gluten content (10.8%) to those of "Keumkang" (11.9%, 62.3 ml and 10.2%, respectively). It showed lower water absorption (59.6%) and mixing time (3.8 min) in mixograph and higher fermentation volume (1,350 ml) than those of "Keumkang" (60.6%, 4.7 min and 1,290 ml, respectively). Amylose content and pasting properties of "Hanbaek " were similar to those of "Keumkang". "Hanbaek" showed same compositions in high molecular weight glutenin subunits (HMW-GS, 2*, 13+16, 2+12), granule bound starch synthase (Wx-A1a, Wx-B1a, and Wx-D1a) and puroindolines (Pina-D1a/Pinb-D1b) compared to "Keumkang". "Hanbaek" showed lower hardness (4.22N) and similar springiness and cohesiveness of cooked noodles (0.94 and 0.63) to those of "Keumkang" (4.65N, 0.93 and 0.64, respectively). Average yield of "Hanbaek" in the regional adaptation yield trial was 5.98 MT/ha in upland and 5.05 MT/ha in paddy field, which was 8% and 6% higher than those of "Keumkang" (5.55 MT/ha and 4.77 MT/ha, respectively). "Hanbaek" would be suitable for the area above the daily minimum temperature of $-10^{\circ}C$ in January in Korean peninsula.

High Quality and High Yielding Rice Variety 'Cheongdam' Adaptable to Direct Seeding (고품질 다수성 직파재배적성 신품종 '청담벼')

  • Choi, Im-Soo;Kang, Kyung-Ho;Jeong, O-Young;Jeong, Eung-Gi;Cho, Young-Chan;Kim, Yeon-Gyu;Kim, Myeong-Ki;O, Myeong-Gyu;Choi, In-Bea;Jeon, Yong-Hee;Won, Young-Jae;Shin, Young-Seoup;Oh, In-seok
    • Korean Journal of Breeding Science
    • /
    • v.43 no.6
    • /
    • pp.581-586
    • /
    • 2011
  • 'Cheongdam' is a japonica rice variety developed from a cross between SR19200-HB826-34, a line of good germination ability and shoot emergence at low temperature and Juanbyeo, good quality and direct-seeding adaptable cultivar by the rice breeding team of National Institute of Crop Science, RDA in 2006. This variety has 153 days of total growth duration from seeding to maturity in direct-seeding, and 160 days of growth duration from seeding to maturity in transplanting. This is erect plant type with culm length of 74 cm, thick culm, and green leaves. It has large panicle shape with 126 and 140 spikelets per panicle in direct-seeding and transplanting, respectively. Milled rice is transluscent and medium in grain size of non-glutinous endosperm. This variety is susceptible to leaf and neck blast, bacterial blight, stripe virus disease and brown planthopper. The yield potential of 'Cheongdam' is 5.84 MT/ha at ordinary transplanting culture and 5.62 MT/ha and 5.89 MT/ha at wet direct-seeding and dry direct-seeding cultures, respectively in the local adaptability test for three years. 'Cheongdam' would be adaptable to middle and southern plain of Korea for direct-seeding culture and transplanting rice culture.

A New White Wheat Variety, "Baegjoong" with High Yield, Good Noodle Quality and Moderate to Pre-harvest Sprouting (백립계 다수성 수발아 중도저항성 제면용 밀 신품종 "백중밀")

  • Park, Chul Soo;Heo, Hwa-Young;Kang, Moon-Suk;Lee, Chun-Kee;Park, Kwang-Geun;Park, Jong-Chul;Kim, Hong-Sik;Kim, Hag-Sin;Hwang, Jong-Jin;Cheong, Young-Keun;Kim, Jung-Gon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.153-158
    • /
    • 2008
  • "Baegjoong", a white winter wheat (Triticum aestivum L.) cultivar was developed by the National Institute of Crop Science, RDA. It was derived from the cross "Keumkang"/"Olgeuru" during 1996. "Baegjoong" was evaluated as "Iksan307" in Advanced Yield Trial Test in 2004. It was tested in the regional yield trial test between 2005 and 2007. "Baegjoong" is an awned, semi-dwarf and soft white winter wheat, similar to "Keumkang" (check cultivar). The heading and maturing date of "Baegjoong" were similar to "Keumkang". Culm and spike length of "Baegjoong" were 77 cm and 7.5 cm, similar to "Keumkang". "Baegjoong" had lower test weight (802 g) and lower 1,000-grain weight (39.8 g) than "Keumkang" (811 g and 44.0 g, respectively). It had resistance to winter hardiness, wet-soil tolerance and lodging tolerance. "Baegjoong" showed moderate to pre-harvest sprouting (23.9%) although "Keumkang" is susceptible to pre-harvest sprouting (38.9%). "Baegjoong" had similar flour yield (72.4%) and ash content (0.41%) to "Keumkang" (72.0% and 0.41%, respectively) and similar flour color to "Keumkang". It showed lower protein content (8.8%) and SDS-sedimentation volume (35.3 ml) and shorter mixograph mixing time (3.8 min) than "Keumkang" (11.0%, 59.7 ml and 4.5 min, respectively). Amylose content and pasting properties of "Baegjoong" were similar to "Keumkang". "Baegjoong" had softer and more elastic texture of cooked noodles than "Keumkang". Average yield of "Baegjoong" in the regional adaptation yield trial was $5.88\;MT\;ha^{-1}$ in upland and 5.35 MT ha-1 in paddy field, which was 13% and 17% higher than those of "Keumkang" ($5.21\;MT\;ha^{-1}$ and $4.58\;MT\;ha^{-1}$, respectively). "Baegjoong" would be suitable for the area above the daily minimum temperature of $-10^{\circ}C$ in January in Korean peninsula.

An Early-Maturing, Blast Resistant and High Quality Rice Cultivar "Pyeongwon" (벼 조생 단간 내도열병 고품질 신품종 "평원")

  • Ryu, Hae-Young;Jeon, Yong-Hee;Jung, Kuk-Hyun;Shin, Young-Seop;Hwang, Hung-Goo;Kim, Hong-Yeol;Kim, Myeong-Ki;Jung, O-Young;Won, Yong-Jae;Kim, Yeon-Gyu;Yang, Chang-In;Lee, Jeom-Ho;Lee, Jeong-Il;Lee, Jeong-Heui;Choi, Yoon-Hee;Yang, Sae-Jun;Ahn, Eok-Keun
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.177-181
    • /
    • 2009
  • 'Pyeongwon' is a new japonica rice cultivar which is developed from a cross between Jinbu19 and Samjiyeon4 from North Korea by the rice breeding team of National Institute of Crop Science, RDA. Pyeongwon has about 107 days duration from seeding to heading in mid-northen plain, alpine, north-eastern coastal and southern alpine areas. It has about 67 cm culm length and tolerance to lodging. Pyeongwon has 13 tillers per hill and 82 spikelets per panicle. It showed tolerance to heading delay and spikelet sterility due to cold treatment similar to Odaebyeo. It also showed slow leaf senescence and moderate tolerance to viviparous germination during the ripening stage. Pyeongwon has resistance to blast disease but susceptible to stripe virus and brown planthopper. Milled rice of Pyeongwon has translucent kernels, relatively clear non-glutinous endosperm and medium short grain. It is characterized as a low gelatinization temperature and slightly lower amylose content (17.1%) variety compared to Odaebyeo (19.5%) and has good palatability of cooked rice. The milled rice yield performance of this cultivar was about 5.28 MT/ha by ordinary culture in local adaptability test for three years. This cultivar may be highly adaptable to the mid-northen plain, alpine, north-eastern coastal and southern alpine areas of Korea.

Effect of Air Circulation Velocity on the Rate of Lumber Drying in a Small Compartment Wood Drying Kiln (소형 목재인공건조실에 있어서 공기순환속도가 목재건조율에 미치는 영향)

  • Chung, Byung-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.5-7
    • /
    • 1974
  • 1. This study indicates that above the fiber saturation point the drying rate can be increased with increasing the velocity of the air circutation, i.e., the drying rate of sample boards is proportional to the air velocity, but below the fiber saturation point, the effect of the velocity of air circulation is very low as shown in Figs. 1 and 2. 2. Under the controlled temperature and humidity in the kiln, the more the sample boards have moisture, the higher drying rate of it can be obtained. In other words, this means that even though in the case of drying various moisture content of wood, at the final drying stage, approximately the same percentage of moisture content of wood can be secured by employing the higher velocity of air circulation. 3. This study shows that the rate of drying in kiln changes distinctly at the fiber saturation point, i, e., above the fiber saturation point, the drying curve shows concave aginst the X axsis, but below the fiber saturation point, in the range from 30 percent of moisture content to 20 percent of moisture content, the curve shows convex as shown in Fig. 3. As the drying progresses, however, the drying curve shows concave again below 20 percent of moisture content. This means that inflection point of drying curve may be located clearly at the fiber saturation point, i.e., 30 percent of moisture content. As mentioned above, the 30 percent of moisture content of wood at which the inflectional point appears can be recognized as a critical point, i. e., the fiber saturation point at which all free water was removed from wood. The existence of inflectional point indicates that the evaporation of hygroscopic water in a cell wall is more difficult than the evaporation of free water in a cell cavity and the minor space of cell wall. The convex curve in the range of moisture content from 30 percent to 20 percent means that the evaporation of capillary condensed water has a tendency of the same rates of drying approximately, but as approaching to the 20 percent of moisture, the transfusion of moisture from wood becomes difficult because of having less moisture in cell wall. Below 20 percent of moisture content, the drying curve shows concave again, which means that it is difficult to remove the moisture located nearer to the surface of cellulose molecules and the surface bound water. These relations were revealed in Fig. 4. In comparison AC curve which does not have the two inflection points with BD curve which has two inflection points, i.e., Band D, they are mentioned already, by existence of the inflection points, the curve BD shows that the change of drying rate in the interval from 20 percent of moisture content to 30 percent of moisture content is not greater than in the case of the curve AC in the same interval. At the inflection point of 30 percent of moisture content, it can be noticed that the changing of the drying rate is very conspicuous. This phenomenon also can be recognized, as it is noticed by the Fig. 3, the drying rate from green to 30 percent of moisture content is very great. But the inclination of the curve is very slow from 30 percent of moisture content to 20 percent of moisture content, i.e., the inclination of the curve becomes almost horizontal lines. Acknowledgments Gratitude is expressed to Fred E. Dickinson, Professor of 'Wood Technology, School of Natural Resources, University of Michigan, USA for his suggestion to carry out this study.

  • PDF

Effects of the Development of Cracks into Deeper Zone on Productivity and Dryness of the Clayey Paddy Field (점토질 논 토양의 심층화가 토지생산성 및 유면건조에 미치는 영향)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3059-3088
    • /
    • 1973
  • The Object of research was laid on the dry paddy field which had a low level of underground water, rather than on a paddy field with a high level of underground water. In the treatment of the clay paddy field before transplanting we employed 3 kinds of methods; deep plowing, development of cracks by drying the surface of the field under which pipe drain was built. This study was to find which one, among these three methods, is the most effective to let roots extend to deep zone and increase the yield of rice and at the same time, for trafficability of large scale machinery which will be introduced to the harvest, in the light of the earth bearing capacity in relation with underground drainage. In the treatments of plots, 1) the kyong plot was plowed 39 days before transplanting and dried, 2) the kyun plot was plowed again 2days before transplanting after plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying, 3) the kyunam plot was plowed again 2 days before transplanting after setting the drainage pipe and at the same time plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying. Also each plot above had three different levels of soil depth, respectively; that is 15cm, 25cm, 35cm. The kyong plot with 15cm-depth was he control. The results obtained were as follows; 1. The kyunam plot showed a remarkably lager amount of water consumption by better underground drainage than the kyong and the kyun plot, and the kyong plot indicated a greater amount of water consumption than the kyun plot. Therefore the amount of available rainfall was decreased in the order of kyunam>kyong>kyun. The net duty of water decreased in the order of kyunam>kyong>kyun and its showed about 105cm in depth at the kyunam plot, about 70cm in depth at the kyong plot and about 45cm in depth at kyun plot, regardless of soil depth. 2. According to the tendency that the weight of the total root was effected by the maximum depth of the crack, it seemed that the root development was more affected by the depth of the crack than by only the crack itself. The weight of the total roots tended to increase as the depth of the crack got deeper and deeper, and the weight of the total roots was increased in the order of kyun<kyunam<kyong. 3. In the growing of the plant height, the difference did not appear at the beginning of growing(peak period of tillering) of any plot, But for the mid period of growing(ending period of tillering) to the period of young panicle formation, the deeper the depth of plot is, the more the growing goes down. On the contrary at the late period of growing, growth was more vigorous in the plot with deep depth than in the plot with shallow depth. Since the midperiod of growing, in the light of experimental treatment, the kyun plot was not better in growing than the other two plots and no remarkable defference was shown between the kyunam and the kyong plot, but the kyunam plot had the tendency of superiority in growing plant height. 4. As the depth of plot went deeper, the decreasing tendency was shown in the number of tillers through a whole period of growingi. When the above results were observed concering each plot of experimental treatment, the kyun plot was always smaller in the number of tiilers than the kyunam and the kvong plot, and the kyong plot was slightly larger than the kyunam plot in the number of tillers. 5. When each plot of the different experimental treatments was compared with the control plot(15-kyong), yield(weight of grains) was increased by 17% for the 35-kyong plot, by 10% for the 35-kyunam and yields for the other plots were less or nomore than the control plot. On the whole, as the depth of plot went deeper, yields for plots was increased in the order of kyong>kyunam>kyun. 1% of significance between the levels of depths and 5% of significance between the treatments were shown. 6. The depth of consumptive water which was more effective on the weight of grains is that of the last half period. When the depth of consumptive water was increased at the range of less than 2.7cm/day in the 15cm plot, 3.0cm/day in the 25cm plot and 3.3cm/day in the 35cm plot, the weight of grains was increased, and at the same time the weight of grains was increased as the depth of plot went deeper. The deeper plots was of advantage to the productivity at the same depth of consumptive water. 7. The increase in the weight of grains in propertion to the weighte of root showed a tendency to increase depending on the depth of plot at each plot of the same weight of roots. The weight of roots and grains together increasezd in the order of kyun>kyunam>kyong, considering each treatment of experimental plot. The weight of grains was in relation to the minimum water content ratio during the midperiod of surface drainage and the average earth temperature was mainly affected by the minimum water content ratio because it was relatively increased in proportion to the water content ratio(at less than 40%) 8. The weight ratio of straw to grain showed an increasing tendency at the plot of shallow depth and had a relation of an inversely exponental function to the weight of roots. At the same depth of plot except the 15cm plot, the weight ratio of straw to grain was increased in proportion to the depth of consumptive water. The weight of grains was increased as the depth of consumptive water was increased to some extent, but at the same time the weight of ratio of straw to grain was increased. 9. At a certain texture of soils the increase in the amount of the cracks depends on meteorological conditions, especially increase in amounts of pan evaporation. So if it rains during the progressing of field drying the cracks largely decrease. The amount of cracks of clay soil had relation of inversely exponental function to the water content ratio(at more than 25%). The maximum depth of crack kept generally a constant value at less than 30% of water content ratio. 10. The cone index showed the tendency that it was propertional to the amount of cracks within a certain limit but more or less inversely proportional over a certain limit. The water content ratio at the limit may be about 25%. 11. The increase in the cone index with the progressing of time after final surface drainage showed the tendency that it was proportional to the depth of consumptive water at the last half of growing period. Based on the same depth of if the cone index in the kyunam plot was much larger than in the other two plots and that in the kyong plot was much smaller than in the kyun plott, as long as the depth of plot was deeper, especially in the 35-kyong plot. 12. In the light of a situation where water content ratio of soil decreased and the cone index increased after final surface drainage the porogress of the field dryness was much more rapid in the kyunam plot than in the kyong plot and the kyun plot, especially slowest in the kyong plot. In the plot with deeper zone the progress was much slower. The progress requiring the value of the cone index, $2.5kg/cm^2$, that working machinary can move easily on the field changed with the time of final surface drainage and the amount of rainfall, but without nay rain it required, in the kyunam plot, about 44mm in total amount of pan evaporation and more than 50mm in the other two plots. Therefore the drying in the kyunam plot was generally more rapid in the kyunam plot was generally more rapid over 2days than in the kyun plot, and especially may be more rapid over 5days than in the 35-kyong plot.

  • PDF

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF

Studies on Inheritance and Ecological Variation of the Culm Length and Its Related Characters in Short-Statured Rice Varieties (수도단간품종의 간장 및 관련형질의 유전과 생태적 변이에 관한 연구)

  • Sung-Ho Bea
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.13
    • /
    • pp.1-40
    • /
    • 1973
  • These studies were aimed at clarification of genetic and ecological variation in culm length, panicle length and plant height of the $\textrm{F}_2$ plants in some selected crosses made between semi-dwarf rice varieties and tall Japonica ones. One Indica semi-dwarf, Taichung Native 1, one Indica $\times$ Japonica hybrid, IE51 and one Japonica semi-dwarf, Tankanbaekmang were used as short-gene donors while two of medium maturity varieties, Jinheung and Kwanok and one late veriety, Palkweng were used as the corresponding counterpart of respective dwarf varieties in a series of crosses. Five different crosses, Kwanok $\times$ Tankanbaekmang, Palkweng $\times$ Tankanbaekmang, Jinheung $\times$ T(N)1, Kwanok $\times$ T(N)1 and Kwanok $\times$ IE51, were made among the above six varieties. The $\textrm{F}_2$ plants of these crosses together with the concerned parental varieties were grown under several different conditions including three levels of each nitrogen and planting space, three planting seasons and three locations in 1968, to investigate variation in length of culm and panicle, and plant height. On the other hand, the F$_3$ progenies which were derived from the shortest 10 percent of the plants of three $\textrm{F}_2$ populations, Kwanok $\times$ T(N)1, Jinheung $\times$ T(N) 1 and Kwanok $\times$ IE51 grown in the previous year, were compared each other on the basis of selection efficiency in culm length. The experimental results could be summarized as follows; 1. Genetic behavior A. It was revealed that Tankanbaekmang, one of Japonica dwarf has a simple recessive gene responsible for short culm expression, showing a typical segregation ratio of three tall to one short culm plants in $\textrm{F}_2$ generation of the crosses either with Kwanok or Palkweng. B. In the both combinations, segregation pattern of the panicle length was exactly same as that of culm length. It seems that the same gene controls both culm length and panicle length. C. No difference between segregation of culm length and plant height in the above crosses was observed. D. T(N)1, one of Indica semi-dwarf did not show such a simple genetic behavior as detected from the crosses with Tankanbaekmang in segregation of culm length but formed a continuous and normal distribution curve. Therefore, some nonallelic genic actions might be involved in expression of culm length of the counterpart varieties of T(N)1. In particular, a transgressive segregation appeared toward the direction of longer culm length in case of Jinheung $\times$ T(N)1. The genetic behavior of panicle length and plant height generally coincided with that of culm length in all the cases. E. IE51 demonstrated exactly the same genetic behavior as that of T(N)1 when this variety was crossed with Kwanok. It was clearly clarified that the simple recessive gene controlling dwarfism from T(N)1 was well incorporated into this variety. 2. Ecological variation A. In general, there was a decreasing tendency in culm length and plant height of rice plant as seeding delayed while it was not so noticeable in panicle length. The decreasing magnitude varied from variety to variety and from cross to cross. Genetic behavior of the culm length and related characters of these materials was not disturbed by the variation of seeding season, nitrogen level, planting space and experimental location. E. The elongation mode of the upper three internodes was very similar to the segregation mode of culm length, panicle length and plant height in $\textrm{F}_2$ populations of . all the crosses investigated in this study. Accordingly, this result confirmed that the roles of the upper three internodes are very important in manifesting plant stature in rice. C. The effect of nitrogen on culm length and the related other two characters seemed to be meager. However, it was true to show an increasing tendency of those characters as nitrogen level got increased from 4 kg to 12kg per l0a, with different magnitude depending upon variety or cross. D. Also, the effect of planting space on culm length, panicle length and plant height was relatively small in all the cases. Those characters varied again depending upon variety or cross. However, a general increasing tendency was detected in manifestation of those traits under denser planting space condition. E. All the parental varieties produced shorter culm, panicle and plant height when they were grown at the lower latitude locations. It might be attributed to the fact that their reproductive growth accelerated with increased temperature prevailing at the lower latitude locations such as Iri and Mi1yang. On the countrary, $\textrm{F}_2$ population reacted differently to the different locations from the parental varieties. All the $\textrm{F}_2$ plants produced the longest culm, panicle and plant at Milyang. 3. Selection efficiency A. The heritability of culm length in Kwanok $\times$ T(N)1, Kwanok $\times$ IE51 and Jinheung$\times$T(N)1 was 92 percent, 74 percent and 55 percent, respectively. B. The actual genetic advance for culm length obtained from the progeny lines of the selected plants(10 precent) from the $\textrm{F}_2$ generation, was comparable to the expected advance calculated from the original $\textrm{F}_2$ populations. As compared with the $\textrm{F}_2$ population, the $\textrm{F}_3$ plants of Kwanok $\times$ T(N)l shortened on the average by 20.8cm, those of Kwanok $\times$ IE51 did 8.7cm and those of Jinheung$\times$T(N)1 20.0cm, respectively. C. Panicle length of the populations was differently affected from one cross to another by the selection based upon culm length in $\textrm{F}_2$ Kwanok $\times$ T(N)1 did not show any noticeable shortening of its culm length due to the selection pressure. On the other hand, both Kwanok $\times$ IE51 and Jinheung $\times$ T(N)1 showed a considerable shortening of their panicles in case of selection for culm length. Based upon the above results, it could be concluded that the ecological variation in culm length, panicle length and plant height was relatively small and fallen within the range of genetic variation. Considering from the fact that the simple recessive gene governing short height of Tankanbaekmang always accompanied with some undesirable characters such as short panicle and extremely small grain, the short gene of T(N)1 seemed to be more useful as dwarf gene source since it did not carry short gene together with such undesirable traits.

  • PDF

Agronomical studies on the major environmental factors of rice culture in Korea (수도재배의 주요환경요인에 관한 해석적 조사연구)

  • Yung-Sup Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.49-82
    • /
    • 1965
  • For the stable and high yields of low-land rice in Korea, the characteristics of rice plant for the vegetative and physiological responses, plant type formation, and yield components have been studied in order to obtain the fundamental data for the improvement of cultural practices, especially for the ideal fertilizer application. Furthermore the environmental conditions in Korea including temperatures, light, precipitation, and soil conditions have been compared in the broad sense with those in Japan, and the application of nitrogen, phosphorus, potassium, silicate and other micro-nutrients were described in relation to the characteristics of environmental conditions for the improvement of fertilizer application. 1. The average yield of polished-rice per 10 are in Korea is about 204 kg and this values are much less than those in Japan and Taiwan where they produce 77% to 13% more than in Korea. The rate of yield increase a year in Korea is 4.2 kg, but in Japan and Taiwan the rates of yield increase a year are 81 % and 62%, respectively. It was also found that the coefficient of variation of yield is 7.7% in Korea, 6.7% in Japan and 2.5% in Taiwan. This means that the stability of producing rice in Korea is very low when compared with those in Japan and Taiwan. 2. It was learned from the results obtained from the 'annual yield estimation experiment' that there are big differences in the respect of plant type formations between rice crops grown in Japan and Korea. The important differences found were as follows: (1) The numbers of spikelets per 3.3 square meters are 891 in Korea and 1, 007 in Japan(13% more than in Korea). (2) The numbers of tillers per 3.3 square meters at the stage of maximum tillering are 1, 150 in Korea, but in Japan they showed 19% more than in Korea. (3) The ratio of effective tillers to total tillers is 77.5% in Korea and 74.7% in Japan, which seems to be higher in Korea than in Japan. But the ratio in Korea is very low when considered the numbers of total tillers in both countries. (4) The ratio of grain to straw is 85.4% in Korea and 96.3% in Japan. 3. The average temperatures during the growing season at the area of Suwon, Kwangjoo and Taegu are almost same as those in the district of Jookokoo(Fookoo yama) in Japan, i.e., the temperatures during the rice-growing season in Korea are similar to those in the southern-warm regions of Japan. 4. Considering the minimum temperatures at the stage of limiting transplanting, 13$^{\circ}C$, the time of transplanting might be 30 to 40 days earlier than presently practicing transplanting time, which comes around June 10. 5. The temperatures during the vegetative growth in Korea were higher than those temperatures that needed in the protein synthesis which ate the main metabolism during this stage. However, the temperatures at the time of reproductive growth was lower than the temperatures that needed in the sugar assimilation which is main metabolism in this stage. In this point of view, it might be considered that the proper time of growing rice plant in Korea would be rather earlier. 6. The temperatures and the day light conditions at the time of first tillering stage of rice plant, when planted as presenting transplanting practices, are very satisfactory, but the poor day light length, high temperatures and too wet conditions in the time of last-tillering stage(mid or last July) might cause the occurrence of disease such as blast. 7. The heading stage of rice plants at each region through nations when planted as presently practicing method comes when the day light length is short. 8. It was shown that the accumulated average air-temperature at the time of maturing stage was not enough and the heading time was too late, when considered the annual deviations of mean temperatures and low minimum temperatures. 9. The nitrogen content of each plant part at the each growing stage was very high at the stage of vegetative growth when compared with the nitrogen content at the stage of reproductive growth after heading. In this respect it was believed to be important to prevent the nutrient shortages at the reproductive stages, especially after the heading. 10. The area of unsatisfactory irrigation paddy fields and natural rain-fed paddy fields are getting reduced in Korea. The correlation between the rate of reducing unsatisfactory irrigation and natural rain-fed paddy fields and the rate of yield increase were computed. The correlation coefficients(r) between the area of unsatisfactory irrigation paddy fields and yield increase were +0.525, and between the natural rain-fed paddy fields and yield increase, +0.832 and between the unsatisfactory irrigation plus natural rain-fed paddy fields and yield increase, +0.84. And there were. highly significant positive correlations between natural rain-fed paddy fields and yield increases indicating that the less the area of natural rain-fed paddy fields, the greater the yields per unit area. 11. The results obtained from the fertilizer experiments (yield performance trials) conducted in both Korea and Japan showed that the yield of non-fertilized plots per 10 are was 231 kg in Korea and 360 kg in Japan. On the basis of this it might be concluded that the fertility of soil in Korea is lower than that in Japan. Furthermore it was. also found that the yields of non-nitrogen applied plots per 10 are were 236 kg in Korea and 383 kg in Japan. This also indicates that the yields of rice in Korea are largely depending on the nitrogen content in the soil. 12. The followings were obtained when the chemical natures of soils in both Korea and Japan were compared. (1) The content of organic matter, total nitrogen, exchangeable calcium, and magnesium in Korea were no more than the half those in Japan. (2) The content of N/2 chloride and soluble silicate in low-land soil were on the average lower in Korea. (3) The exchange capacity of bases in Korea was no more than half that in Japan. 13. It was also observed by comparing the soil nature of the soil with high yielding capacity with the soil with low yielding capacity that the exchange capacity of bases, exchangeable calcium and magnesium, potassium, phosphorus, manganese, silicate and iron were low in the soil with low yielding capacity. 14. The depth of furrow slice was always deeper in the soil with high yielding capacity, and the depth of furrow slice in Korea was also shallower than that in Japan. 15. Summarizing the various conditions mentioned previously and considering the effects of silicate and trace elements such as manganese and iron besides three elements on the physiological and plant type formation of rice crops, more realistic and more ideal fertilizing practices were proposed. proposed.

  • PDF