• Title/Summary/Keyword: Grain structure

Search Result 1,248, Processing Time 0.026 seconds

Grain Size Determination of Copper Film by Electron Backscatter Diffraction (EBSD를 이용한 구리박막의 결정립 크기 결정)

  • Kim, Su-Hyeon;Kang, Joo-Hee;Han, Seung Zeon
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.847-855
    • /
    • 2010
  • The grain size of a cross-section of $8{\mu}m$-thick copper film was determined by electron backscatter diffraction analysis. Grain size distribution histogram showed the presence of a large fraction of small-sized grains, and the mean grain size was significantly affected by handling of them. A cut-off grain size, below which all grains are ignored as noise and eliminated for the calculation of the mean value, should be three or four times as large as the step size. Due to the presence of small grains, the linear intercept method derived larger mean grain size, which depends less sensitively on the cut-off grain size than the equivalent circle diameter method.

Finite Element Analysis and Experiments of Milli-Part Forming of Strip Bending Using Grain Element (입자요소계를 이용한 유한요소 해석)

  • Ku T.W.;Kim D.J.;Kang B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.266-273
    • /
    • 2002
  • Milli-structure components are classified as a component group whose size is between macro and micro scales, that is, about less than 20mm and larger than 1mm. The bending of these components of thin sheets has a typical phenomenon of bulk deformation because of the forming size. The recent trend towards miniaturization causes an increased demand for parts with very small dimensions. The conceptual miniature bending process enables the production of such parts with high productivity and accuracy. The stress values of the flow curve decrease with miniaturization, which means that coarse grained materials show a higher resistance against deformation, when the grain size is in the range of the sheet thickness. In this paper, a new numerical approach is proposed to simulate intergranular milli-structure in forming by the finite element method. The grain element and grain boundary element are introduced to simulate the milli-structure of strip in the bending. The grain element is used to analyze the deformation of individual grain while the grain boundary element is for the investigation on the movement of the grain boundary. Also, the result of the finite element analysis is confirmed by a series of milli-sized forming experiments.

  • PDF

Critical currents across grain boundaries in YBCO : The role of grain boundary structure

  • Miller Dean J.;Gray Kenneth E.;Field Michael B.;Kim, Dong-Ho
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.14-19
    • /
    • 1999
  • Measurements across single grain boundaries in YBCO thin films and bulk bicrystals have been used to demonstrate the influence of grain boundary structure on the critical current carried across the grain boundary. In particular, we show that one role of grain boundary structure is to change the degree of pinning along the boundary, thereby influencing the critical current. This effect can be used to explain the large difference in critical current density across grain boundaries in thin films compared to that for bulk bicrystal. These differences illustrate the distinction between the intrinsic mechanism of coupling across the grain boundary that determines the maximum possible critical current across a boundary and the measured critical current which is limited by dissipation due to the motion of vortices.

  • PDF

High-Temperature Deformation Behavior of Ti3Al Prepared by Mechanical Alloying and Hot Pressing

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.57-60
    • /
    • 2020
  • Titanium aluminides have attracted special interest as light-weight/high-temperature materials for structural applications. The major problem limiting practical use of these compounds is their poor ductility and formability. The powder metallurgy processing route has been an attractive alternative for such materials. A mixture of Ti and Al elemental powders was fabricated to a mechanical alloying process. The processed powder was hot pressed in a vacuum, and a fully densified compact with ultra-fine grain structure consisting of Ti3Al intermetallic compound was obtained. During the compressive deformation of the compact at 1173 K, typical dynamic recrystallization (DR), which introduces a certain extent of grain refinement, was observed. The compact had high density and consisted of an ultra-fine equiaxial grain structure. Average grain diameter was 1.5 ㎛. Typical TEM micrographs depicting the internal structure of the specimen deformed to 0.09 true strain are provided, in which it can be seen that many small recrystallized grains having no apparent dislocation structure are generated at grain boundaries where well-developed dislocations with high density are observed in the neighboring grains. The compact showed a large m-value such as 0.44 at 1173 K. Moreover, the grain structure remained equiaxed during deformation at this temperature. Therefore, the compressive deformation of the compact was presumed to progress by superplastic flow, primarily controlled by DR.

FE Analysis and Experiments of Milli-fart forming Using Grain and Grain Boundary Element (입자요소를 이용한 미세 성형 부품의 유한요소 해석 및 실험)

  • Ku, Tae-Wan;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.109-118
    • /
    • 2003
  • The recent trend towards miniaturization causes an increased demand for parts with very small dimensions. Milli-structure components are classified as a component group whose size is between macro- and micro-scale. The manufacturing process of these components of thin sheet metal forming has a microscopic properties in addition to a typical phenomenon of bulk deformation because of the forming size. Also, the material properties and the deformation behavior change with miniaturization, which means that, a coarse grained materials show a higher resistance against deformation, when the grain size is in the range of the sheet thickness. In this study, a new numerical approach is proposed to simulate intergranular milli-structure in forming by the finite element method. The grain element and grain boundary element are introduced to simulate the milli-structure in the bending. The grain element is used to analyze the deformation of individual grain while the grain boundary element is for the investigation on the movement of the grain boundary. Also, the result of the finite element analysis is confirmed by a series of milli-sized forming experiments.

High Temperature Deformation Behavior of Nano Grain W Produced by SPD-PM Process

  • Oda, Eiji;Ohtaki, Takao;Kuroda, Akio;Fujiwara, Hiroshi;Ameyama, Kei;Yoshida, Kayo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.126-127
    • /
    • 2006
  • In this study, nano grain W is fabricated by Severe Plastic Deformation-Powder Metallurgy (SPD-PM) process. W powder and W-Re powder mixtures are processed by SPD-PM process, a Mechanical Milling (MM) process. As results, a nano grain structure, whose grain size is approximately 20nm, is obtained in W powder after MM for 360ks. A nano grain W compact, whose grain size 630nm, has excellent deformability above 1273K. A nano grain W-10Re compact is composed of equiaxed grain, a grain growth is restrained and has low dislocation density after the large deformation; therefore it is considered that W-Re compact shows superplasticity.

  • PDF

A study of the relations between the Silver halide Grain structure in Emulsion and the Granularity (유제중의 AgX grain의 형태와 입상도에 관한 연구)

  • JeWungOh
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.8 no.1
    • /
    • pp.21-53
    • /
    • 1990
  • In analysing the Image quality, one of the most important things to be considered is the granularity at a given emulsion speed. To enhance the image quality, the granularity should be lowered by the suitable methods, such as controlling the design of emulsion, grain size and structure, the distribution state of grains in the emulsion, etc. In this paper, the relations between the AgX grain structure and granularity are studied as a way of lowering granularity. According to the results, it is found that the grain structure is a very important factor for determining the granularity characteristics.istics.

  • PDF

Preparation of TZM Alloys Having Elongated Coarse-grain Structure with High Aspect Ratio and their Mechanical Properties

  • Toyosima, Gouhei;Nagae, Masahiro;Yoshio, Tetsuo;Takada, Jun;Hiraoka, Yutaka;Takida, Tomohiro
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1163-1164
    • /
    • 2006
  • TZM alloy having elongated coarse-grain structure was developed by three-step internal nitriding treatment at 1423 to 1873 K in $N_2$ and subsequent recrystallization treatment at 2173 K in vacuum. Some specimens were subjected to re-nitriding treatment at 1873 K for 16 h. After the recrystallization treatment, aspect ratio (L/W) of grains for rolling direction was about 50 at the maximum. Yield stress obtained at 1773 K after re-nitriding treatment was about 6 times as large as that of recrystallized specimen. Re-nitriding was very effective in the improvement in strength of TZM alloy having elongated coarse-grain structure.

  • PDF

The Structure and Electrical Characteristics of ZnO Varistors Surface using-Fractal (프랙탈을 이용한 ZnO 바리스터 표면 구조 및 전기적 특성)

  • Oh, Soo-Hong;Hong, Kyung-Jin;Lee, Jin;Lee, Joon-Ung;Kim, Tae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.10
    • /
    • pp.834-839
    • /
    • 2000
  • The structural properties that SEM photograph of ZnO varistors surface studied by fractal mathematics program were investigated to verify the relations of electrical characteristics. The SEM photograph of ZnO varistors surface were changed by binary code and the grain shape of that were analyzed by fractal dimension. The void of ZnO varistors surface was found by fractal program. The relation between grain density and electrical properties depend on fractal dimension. The grain size in ZnO varistors surface was decreased by increasing of Sb$_2$O$_3$ addition. The spinel structure was formed by Sb$_2$O$_3$addition and it was depressed the ZnO grain formation. The grain size of ZnO by Sb$_2$O$_3$addition were from 5 to 10[${\mu}{\textrm}{m}$]. Among of ZnO varistors, fractal dimension of ZnO4 was very high as a 1.764. The density of grain boundary in ZnO2 and ZnO3 varistors surface was 15[%] by formed spinal structure. The breakdown electric field of ZnO2 that fractal dimension has 1.752 was very high to be 8.5[kV/cm]. When the fractal dimensin was high, the grain shape of ZnO varistors was complex and the serial layers of ZnO grain was increased.

  • PDF

Chemically Induced Zigzag Migration in Alumina Bicrystals (알루미나 쌍결정에서 조성변화에 의한 Zigzag Migration)

  • 백용균;강석중
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1117-1122
    • /
    • 1995
  • The effect of grain boundary structure on zigzag migrtion has been studied. Five kinds of a(2110)-m(1010) diffusion couples with different twist angles by 30$^{\circ}$from a [0001] common direction of each plane were prepared. When chromia (Cr2O3) was added to the diffusion couples by a vapor phase, zigzag migration of the grain boundary occurred. The fraction of zigzag migration did not essentially vary with the twist angle, but the magnitude and migration distance of individual migrating segment varied. The variation of CIGM morphology thus appears to result from the change in grain boundary mobility due to microscopic deviation of grain boundary structure out of a macroscopic grain boundary orientation.

  • PDF