• Title/Summary/Keyword: Grain size of ferrite

Search Result 167, Processing Time 0.019 seconds

Correlation between Microstructure and Mechanical Properties of Base Metal and HAZ of 500 MPa Steel Plates for Offshore Platforms (해양플랜트용 500 MPa급 후판강의 모재 및 HAZ의 미세조직과 기계적 특성의 상관관계)

  • Park, Jiwon;Cho, Sung Kyu;Cho, Young Wook;Shin, Gunchul;Kwon, Yongjai;Lee, Jung Gu;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.123-130
    • /
    • 2020
  • In this study, two types of thick steel plates are prepared by controlling carbon equivalent and nickel content, and their microstructures are analyzed. Tensile tests, Vickers hardness tests, and Charpy impact tests are conducted to investigate the correlation between microstructure and mechanical properties of the steels. The H steel, which has high carbon equivalent and nickel content, has lower volume fraction of granular bainite (GB) and smaller GB packet size than those of L steel, which has low carbon equivalent and nickel content. However, the volume fraction of secondary phases is higher in the H steel than in the L steel. As a result, the strength of the L steel is higher than that of the H steel, while the Charpy absorbed energy at -40 ℃ is higher than that of the L steel. The heat affected zone (HAZ) simulated H-H specimen has higher volume fraction of acicular ferrite (AF) and lower volume fraction of GB than the HAZ simulated L-H specimen. In addition, the grain size of AF and the packet sizes of GB and BF are smaller in the H-H specimen than in the L-H specimen. For this reason, the Charpy absorbed energy at -20 ℃ is higher for the H-H specimen than for the L-H specimen.

The Effect of Chemical Composition and Sintering Temperature on The Improvement of Physical Properties of Mn-Zn Ferrites (Mn-Zn ferrite의 성분 및 소결 온도에 따른 물리적 특성의 향상 연구)

  • 고재귀
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.269-274
    • /
    • 1995
  • The basic composition of Mn-Zn ferrite was $Mn_{0.631}Zn_{0.316}Fe_{2.053}O_{4}$(specimen A), $Mn_{0.584}Zn_{0.312}Fe_{2.104}O_{4}$(specimen B) and $Mn_{0.538}Zn_{0.308}Fe_{2.154}O_{4}$(specimen C) with additional 0.1 mol % $CaCo_{3}$ and 0.04 mol % $V_{2}O_{5}$. For high per¬meability and acceleration of grain growth, $CaCo_{3}$ and $V_{2}O_{5}$. was added. The mixture of the law materials was calcinated at $950^{\circ}C$ for 3 hours and then milled. The compacts of toroidal type were sintered at different temperature($1250^{\circ}C$, $1300^{\circ}C$, $1350^{\circ}C$) for 2 hours in $N_2$ atmosphere. The effects of the various raw material composition and sintered temperature on the physical properties of Mn-Zn ferrite have been investigated. They turned out to be spinel structure by X-ray diffraction and the size of grain from SEM was from $18\;\mu\textrm{m}\;to\;23\;\mu\textrm{m}$. As the sintering temperature was increased from $1250^{\circ}C$ to $1350^{\circ}C$, the initial permeability and magnetic induction has increased and the both of Q factor and coercive force has decreased. The coercive force and curie temperature were almost the same at each specimen Their values were about 0.45 Oe and $200^{\circ}C$. The frequency of specimen will used in the range from 200 kHz to 2 MHz. The basic composition of $Mn_{0.584}Zn_{0.312}Fe_{2.104}O_{4}$(specimen B) sintered at $1300^{\circ}C$ shows the best results at magnetic induction (Br & Bm).

  • PDF

Effect of Soaking Temperature on the Bake Hardnability of Ti-Nb Stabilized Steel Sheets (Ti-Nb 복합 첨가강의 BH특성에 미치는 균열온도의 영향)

  • Hur, Bo-Young;Um, Yong-Su;Kim, Sang-Youl;Cho, Sang-Hun;Nam, Tae-Woon
    • Journal of Korea Foundry Society
    • /
    • v.24 no.4
    • /
    • pp.231-237
    • /
    • 2004
  • Bake hardenable steel utilizes the phenomenon of strain aging to provide an increase in the yield strength of formed components. An increase of the carbon content will improve the bake hardening response: more solutes are available to pin mobile dislocations and to form the clusters more rapidly. But aging resistance decrease as increasing solute carbon. In order to under-stand the compatibility between bake hardenability and aging resistance. The optimum solute carbon control methods during manufacture should be determined. In this paper, the effect of continuous heat cycle conditions such as soaking temperature, rapid cooling start temperature, cooling rate on BH(Bake Hardenability), AI(Aging Index), YP-El(Yield Point Elongation) and other mechanical properties have been investigated. and following results were obtained. In the case of soaking temperature, BH increases with higher soaking temperature because of NbC $dissolution(830^{\circ}C)$, Therefore the solute carbon and BH at $850^{\circ}C$ and $870^{\circ}C$ are higher than these at $810^{\circ}C$. But BH at $870^{\circ}C$ is a little lower than that at $850^{\circ}C$ owing to the ferrite grain size. The measurement of amount of dissolution C using IFT(Internal Friction Test) can explain the relation of solute carbon and BH.

Effect of $N_2$ and $O_2$ Properties of STS304 Stainless Steel Films Synthesized by Unbalanced Magnetron Sputtering Process (비대칭 마그네트론 스퍼터링법에 의해 합성된 STR304 스테인리스강 박막에서의 질소와 산소의 첨가 효가)

  • 김광석;이상율;김범석;한전건
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.2
    • /
    • pp.89-96
    • /
    • 2001
  • N- or O-doped STS304 stainless films were synthesized by an unbalanced magnetron sputtering process with various argon and reactive gas ($N_2$, $O_2$) mixtures. These films were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Auger electron spectroscopy (AES) and Knoop microhardness tester. The Results from X-ray diffraction (XRD) analysis showed that a STS304 stainless steel film synthesized without reactive gas using a bulk STS304 stainless steel target had a ferrite bcc structure ($\alpha$ phase), while the N-doped STS304 stainless film was consisted of a nitrogen supersaturated fcc structure, which hsa a strong ${\gamma}$(200) phase. In the O-doped films, oxide Phases ($Fe_2$$O_3$ and $Cr_2$$O_3$) were observed from the films synthesized under an excess $O_2$ flow rate of 9sccm. AES analysis showed that nitrogen content in N-doped films increased as the nitrogen flow rate increased. Approximately 43 at.%N in the N-doped film was measured using a nitrogen flow rate of 8sccm. In O-doped film, approximately 15 at.%O was detected using a $O_2$ flow rate of 12sccm. the Knoop microhardness value of N-doped film using a nitrogen flow rate of 8 sccm was measured to be approximately $H_{ k}$ 1200 and this high value could be attributed to the fine grain size and increased residual stress in the N-doped film.

  • PDF

Additive Effects on Magnetic Properties in High Permeability Mn Zn Ferrite (고투자율 Mn-Zn 페라이트의 첨가물 효과에 따른 자기적 특성연)

  • Jeong, Gap-Gyo;Choe, Seung-Cheol
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.497-504
    • /
    • 1993
  • Effects of $Ta_2O_5,ZrO_2$ and $SiO_2$ addition on magnetic properties of 0.02wt%$Bi_2O_3$ and 0 . 0 5 wt%$CaCO_3$ doped Mn-Zn ferrites(58.5mol% $Fe_2O_3$, 25.5 mol% ZnO) were investigated. E:lectrlcal resistivity and magnetic properties such as the initial permeability($\mu_i$), loss factor(tan$\delta$), coercive force Hc(m0c) were measured. With lncreasing $Ta_2O_5$ and $ZrO_2$ addition, the following effects were observed: I ) Decreasing of the average grain size; 2) lncreasing of the electrical resistivity and initial permeability; 3) Ilecreasmg of loss factor values. (very low loss esprcially at high frequency region) ; 4 ) Fine and uniform microsrructures were obtamed at O.lwt% nddecl samples. In case of $SiO_2$ addition, anomalous grain growth and degradation of magnetic properties were observed. The obtained maximum initial permeability value was 6260 at IOkHz. $25^{\circ}C$ from 0.02wt%$Bi_2O_3$. 0.05wt%$CaCO_3$, 0.lwt%$Ta_2O_5$ added sample, the corresponded relative loss factor (tan$\delta /\mu_i$)for the sample was $4.2 \times 10^{-6}$.

  • PDF

The Study of Low Carbon Microalloyed Forging Steels by Direct Quenching Method with Mo Additions (몰리브덴을 첨가한 직접 소입 저탄소 비조질강에 관한 연구)

  • Wee, Kyoum-Bok;Lee, Kyung-Sub
    • Korean Journal of Materials Research
    • /
    • v.2 no.6
    • /
    • pp.452-460
    • /
    • 1992
  • Effects of the microalloyed elements, temperatures and cooling rates on the strength and toughness of the medium carbon microalloyed hot forging steels obtained by air cooling(A.C.) method and the low carbon microalloyed forging steels by direct quenching(D.Q.) method were investigated. Combined additions of V+Nb produced the optimum combination of strength and toughness with ferrite-pearlite structure of the medium carbon steel by the A.C. method. 831MPa in UTS and 52.1J in toughness were obtained for 0.40c+0.12V+0.07Nb. It was martensite structure for the low carbon steel by the D.Q. method. The highest UTS and toughness obtained by Mo additions were 855MPa and 108j by 0.12C+0.10V+0.03Nb+1.13Mo respectively. Especially, the toughness of the low carbon steel was twice better than that of the medium carbon steel. 110$0^{\circ}C$was more appropriate than 120$0^{\circ}C$ for the reheating and forging temperature and 1.$2^{\circ}C$ /s was the best cooling rate from the viewpoint of the strength and toughness. Multiple regression analysis was used to quantify the influence of the microalloyed elements, temperatures and cooling rates on the strength, toughness, austenite grain size, and the pearlite interlamellar spacing.

  • PDF

The Study of Mechanical Properties of Degraded Compacted Graphite Iron(CGI) Under 873~1273 K (873~1273 K에서 열화된 강화흑연강의 기계적 특성 연구)

  • Nam, Ki Woo;Lee, Soo Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.173-180
    • /
    • 2013
  • Compacted graphite iron(CGI), also known as vermicular graphite iron, is a metal which is gaining popularity in applications that require either greater strength, or lower weight than cast iron. Recently compacted graphite iron has been used for diesel engine blocks. Considering that using in exhaust manifold of the diesel engine, CGI340 was conducted the heat treatment during 1 hour to 96 hours from 873 to 1273 K. Mechanical characteristics were evaluated. The obtained results are as follows; The tensile strength of the heat treated specimens showed overall lower tensile strength than that of the base metal. Tensile strength decreases with increasing of heat treatment time, and the higher heat treatment temperature and the longer time, were more reduced. The fatigue limit by the ultrasonic fatigue test was approximately 130 MPa of base metal, 100 MPa of 1173 K (96 hrs) specimen, respectively. The hardness decreases with increasing heat treatment time, and the higher the heat treatment temperature was lowered hardness distribution. In CGI340, average hardness of nodular graphite was 120 Hv, average hardness of vermicular graphite was 114 Hv. This showed lower hardness than the base structure ferrite. The nodular graphite and vermicular graphite according to the heat treatment temperature and time didn't have a consistent change. However, the grain size of base structure grew with increasing of heat treatment time.