• Title/Summary/Keyword: Grain Structure

Search Result 1,246, Processing Time 0.03 seconds

Study on the Environment and Benthos in the Intertidal zone of Haenam peninsula, Korea (해남반도 조간대의 환경과 저서동물상에 관한 연구)

  • SHIN Sook
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.1
    • /
    • pp.63-75
    • /
    • 1993
  • We identified the benthos collected from intertidal zone in Sacho, Naedong, Oran and Kusong of Haenam peninsula in October, 1990 and May, 1991 and examined the distribution pattern on the bases of the analysis of community structure and the physicochemical analysis of sediment including the grain component. The identified benthos consisted of 141 species and 4,641 individuals. The number of species and individuals of Mollusca, Arthropoda and Annelida occupy more than $85\%$ of the total number. When the intertidal zone were divided into soft area and rocky area the species found in rocky area(114 species) were present in a more diverse way than that in soft area(69 species). The composition of species found in 4 localities turned out to be very similar in soft area while in rocky area the most diverse species were found in Kusong. The seasonal appearance frequency of species and individuals showed that the number collected in the spring(106 species, 3,002 individuals) was higher than that in the fall(85 species, 1,639 individuals). The most dominant species was Cerithideopsilla djadjariensis belonging to Gastropoda, Mollusca(412 individuals) and the species collected more than 200 individuals were 5 species of Mollusca and 1 species of Arthropoda. The species diversity index of 4 localities was in the order of Kusong, Oran, Naedong and Sacho revealed no significant differences among regions. The dominance index was low in Kusong and was high in Sacho. The index of interstational species similarity in soft sediment was very similar with $0.44{\sim}0.53$ value and the index was quite high in Kusong and Oran. This agrees very well with the similarity of the grain component of sediment. In case of rocky area the index was quite low with 0.27 for Kusong and Sacho situated far away from each other. Thus the present study suggests that the distribution of the species was subjected to the physicochemical environmental factor such as the grain component of sediment and the content of organic materials including the geographical factor.

  • PDF

Community Structure of the Macrobenthos in the Soft Bottom of Youngsan River Estuary, Korea 1. Benthic Environment (영산강 하구역의 연성저질에 서식하는 저서동물 군집 1. 저서환경)

  • LIM Hyun-Sig;PARK Kyung-Yang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.3
    • /
    • pp.330-342
    • /
    • 1998
  • Benthic environmental parameters were analysed at 40 stations during the period from April 1995 to February 1996. such as water temperature, salinity, and dissolved oxygen (DO)-concentration in the surface and bottom water layers, grain size, chemical oxygen demand (COD), ignition loss, particulate organic carbon (POC) in the sediment of Youngsan River estuary. The water temperature ranged from 4.1 to $29.8^{\circ}C$ in the surface and 4.0 to $20.7^{\circ}C$ in the bottom layers. Salinity ranged from 15.1 to $33.6\%_{\circ}$ in the surface and 31.5 to $33.2\%_{\circ}$ in the bottom layer. The salinity in the outer pan of the study area was higher than that of inner area from autumn to spring, whereas they remained lower in summer. Dissolved oxygen concentration ranged from 5,1 to 11.2 $mg/\ell$ in the surface, and 0.79 to 10,2 $mg/{\ell}$ in the bottom layers. Hypoxic condition ($\le2.0mg/\ell$) was developed in the bottom water layer from Youngsan dike to Mokpo Harhour in summer due to the summer stratification. The surface sediment type was silty clay with a mean grain size of $9.12{\pm}0.45\phi$. The range of COD was from 6.15 to $15.49mgO_2/g$ with a mean of $10.59{\pm}12.64mgO_2/g$. The COD in the inner stations was relatively higher than that of outer stations, and decreased toward the outer part of the study area. Ignition loss (IL) ranged from 3.35 to $15.45\%$ with a mean of $5.96{\pm}1.91\%$. Principal component analysis was carried out from the following five environmental parameters: water temperature, dissolved oxygen in the bottom layer and mean grain size, clay content and COD in the sediment. The forty stations in the study area were classified into three stational groups. Group I was located in the inner part of the estuary characterised by relatively low surface salinity and bottom water temperature, fine sedimemt texture, high organic matter and low dissolved oxygen concentration during the summer. Meanwhile, Group III showing relatively high bottom salinity and water temperature was located in the outer part of the estuary characterising coarse sediment and low organic content in sediment. Group II was between Group I and Group III. The division of the areal groups had high correlations to the DO in the bottom layer and clay content in the sediment.

  • PDF

Water-absorption characteristics and cooked rice texture of milled rice (쌀 수침 중 벼 품종별 수분흡수 특성 및 취반미 물성)

  • Choi, Induck;Oh, You-Geun;Kwak, Jieun;Chun, Areum;Kim, Mi-Jung;Hyun, WoongJo
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.486-494
    • /
    • 2021
  • A rice (Oryza sativa L.) cultivar of the SPP (stakeholder participatory program) and ordinary rice were characterized based on water-absorption properties and cooked rice texture. During rice soaking, the rice grain transformed from transparent to opaque (white), indicating that water molecules diffused into the rice grain during soaking. In addition, cracks in the internal structure of soaked rice gradually increased with an increase in soaking time. Water absorption increased rapidly up to 20 min, but no increment was observed after 30 min of soaking. At this point, the entire areas of the soaked rice grain turned white, indicating that water absorption had reached saturation. SPP rice showed lower hardness and higher stickiness in its cooked form than ordinary rice, suggesting that SPP rice could be a more preferable choice than ordinary rice. Furthermore, cooked SPP rice was more edible in terms of hardness and stickiness after being kept warm for 12 h than ordinary rice. These results indicated that cooked SPP rice exhibited slow retrogradation and improved taste.

NO Gas Sensing Properties of ZnO-Carbon Nanotube Composites (산화아연-탄소나노튜브 복합체의 일산화질소 가스 감지 특성)

  • Park, Seong-Yong;Jung, Hoon-Chul;Ahn, Eun-Seong;Nguyen, Le Hung;Kang, Youn-Jin;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.655-659
    • /
    • 2008
  • The NO gas sensing properties of ZnO-carbon nanotube (ZnO-CNT) composites fabricated by the coaxial coating of single-walled CNTs with ZnO were investigated using pulsed laser deposition. Upon examination, the morphology and crystallinity of the ZnO-CNT composites showed that CNTs were uniformly coated with polycrystalline ZnO with a grain size as small as 5-10 nm. Gas sensing measurements clearly indicated a remarkable enhancement of the sensitivity of ZnO-CNT composites for NO gas compared to that of ZnO films while maintaining the strong sensing stability of the composites, properties that CNT-based sensing materials do not have. The enhanced gas sensing properties of the ZnO-CNT composites are attributed to an increase in the surface adsorption area of the ZnO layer via the coating by CNTs of a high surface-to-volume ratio structure. These results suggest that the ZnO-CNT composite is a promising template for novel solid-state semiconducting gas sensors.

A simplified phase diagram in the ternary system $Y_2O_3-Ta(Nb)_2O_5-ZrO_2$ ($Y_2O_3-Ta(Nb)_2O_5-ZrO_2$ 삼성분계 상태도)

  • 이득용;김대준;장주웅;이명현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.377-383
    • /
    • 1997
  • Yttria-stabilized TZP alloyed with pentavalent oxides $(Ta_2O_5,\;Nb_2O_5)$ were fabricated by the conventional sintering method at $1500^{\circ}C$ in air to construct the simplified ternary phase diagram. The phase stability of tetragonal -$ZrO_2$ from the quasi-binary system $ZrO_2-YTa(Nb)O_4$, which do not transform to monoclinic-$ZrO_2$ even for a wide range of grain size and annealing temperature, was investigated to determine composition region of the non-transformable $t-ZrO_2$ solid solution$(NT_{ss})$. Phase stability of $NT_{ss}$ was probably due to the enhanced stability of $_YTa(Nb)O4$ having the tetragonal fergusonite structure. It was experimentally found that mixtures having $NT_{ss}$ alloyed with $T_{ss}$ by weight%% showed both excellent phase stability of $t-ZrO_2$ and fracture toughness even though the calculated composition of the mixture /was located outside $NT_{ss}$ composition region.

  • PDF

Effects of thermal annealing of AlN thin films deposited on polycrystalline 3C-SiC buffer layer (다결정 3C-SiC 버퍼층위 증착된 AlN 박막의 열처리 효과)

  • Hong, Hoang-Si;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.112-112
    • /
    • 2009
  • In this study, the effect of a long post-deposition thermal annealing(600 and 1000 $^{\circ}C$) on the surface acoustic wave (SAW) properties of polycrystalline (poly) aluminum-nitride (AlN) thin films grown on a 3C-SiC buffer layer was investigates. The poly-AlN thin films with a (0002) preferred orientation were deposited on the substrates by using a pulsed reactive magnetron sputtering system. Experimental results show that the texture degree of AlN thin film was reduced along the increase in annealing temperature, which caused the decrease in the electromechanical coupling coefficient ($k^2$). The SAW velocity also was decreased slightly by the increase in root mean square (RMS) roughness over annealing temperature. However, the residual stress in films almost was not affect by thermal annealing process due to small lattice mismatch different and similar coefficient temperature expansion (CTE) between AlN and 3C-SiC. After the AlN film annealed at 1000 $^{\circ}C$, the insertion loss of an $IDT/AlN/3C-SiC/SiO_2/Si$ structure (-16.44 dB) was reduced by 8.79 dB in comparison with that of the as-deposited film (-25.23 dB). The improvement in the insertion loss of the film was fined according to the decrease in the grain size. The characteristics of AlN thin films were also evaluated using Fourier transform-infrared spectroscopy (FT-IR) spectra and X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) images.

  • PDF

Crystal growth of ring-shaped SiC polycrystal via physical vapor transport method (PVT 방법에 의한 링 모양의 SiC 다결정 성장)

  • Park, Jin-Yong;Kim, Jeong-Hui;Kim, Woo-Yeon;Park, Mi-Seon;Jang, Yeon-Suk;Jung, Eun-Jin;Kang, Jin-Ki;Lee, Won-Jae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.163-167
    • /
    • 2020
  • Ring-shaped SiC (Silicon carbide) polycrystals used as an inner material in semiconductor etching equipment was manufactured using the PVT (Physical Vapor Transport) method. A graphite cylinder structure was placed inside the graphite crucible to grow a ring-shaped SiC polycrystal by the PVT method. The crystal polytype of grown crystal were analyzed using a Raman and an UVF (Ultra Violet Fluorescence) analysis. And the microstructure and components of SiC crystal were identified by a SEM (Scanning Electron Microscope) and EDS (Energy Disruptive Spectroscopy) analyses. The grain size and growth rate of SiC polycrystals fabricated by this method was varied with temperature variation in the initial stage of growth process.

Factors affecting particle breakage of calcareous soil retrieved from South China Sea

  • Wang, Xinzhi;Shan, Huagang;Wu, Yang;Meng, Qingshan;Zhu, Changqi
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.173-185
    • /
    • 2020
  • Calcareous soil is originated from marine biogenic sediments and weathering of carbonate rocks. The formation history for calcareous sediment includes complex physical, biological and chemical processes. It is preferably selected as the major fill materials for hydraulic reclamation and artificial island construction. Calcareous sands possess inter pores and complex shape are liable to be damaged at normal working stress level due to its fragile nature. Thus, the engineering properties of calcareous soil are greatly affected by its high compressibility and crushability. A series of triaxial shear tests were performed on calcareous sands derived from South China Sea under different test conditions. The effects of confining pressure, particle size, grading, compactness, drainage condition, and water content on the total amount of particle breakage for calcareous soil were symmetrically investigated. The test results showed that the crushing extent of calcareous sand with full gradation was smaller than that a single particle group under the same test condition. Large grains are cushioned by surrounding small particles and such micro-structure reduces the probability of breakage for well-graded sands. The increasing tendency of particle crushing for calcareous sand with a rise in confining pressure and compactness is confirmed. It is also evident that a rise in water content enhances the amount of particle breakage for calcareous sand. However, varying tendency of particle breakage with grain size is still controversial and requires further examination.

The Microstructural and Electrical Properties of Ni-Mn-Co Oxide for the Application of NTC Thermistors (NTC 서미스터로 응용을 위한 Ni-Mn-Co 산화물의 미세구조와 전기적 특성)

  • Kim, Kyeong-Min;Lee, Sung-Gap;Kwon, Min-Su;Kim, Young-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.361-365
    • /
    • 2017
  • In this paper, we investigated the effect of Co content on the microstructural and electrical properties of $Ni_{0.79}Mn_{2.21-x}Co_xO_4$ (x=0 to 0.25) specimens. Solid-state reaction was used to prepare the bulk specimens. XRD (X-ray diffraction) patterns showed that all compositions had a cubic spinel phase. As a result of the microstructural properties, FE-SEM(field-emission scanning electron microscopy) analysis showed a dense structure, and the mean grain size increased from $5.24{\mu}m$ to $7.33{\mu}m$ with an increase of Co content from x=0 to 0.25. All specimens exhibited the typical NTC thermistor characteristics as the electrical resistance exponentially decreased with increasing temperature. The resistivity and the B-value of $Ni_{0.79}Mn_{1.96}Co_{0.25}O_4$ were $2959{\Omega}{\cdot}cm$ and 3719, respectively.

New Co10Fe10Mn35Ni35Zn10 high-entropy alloy Fabricated by Powder Metallurgy (분말야금법으로 제조한 새로운 Co10Fe10Mn35Ni35Zn10 고엔트로피 합금)

  • Yim, Dami;Park, Hyung Keun;Tapia, Antonio Joao Seco Ferreira;Lee, Byeong-Joo;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.208-212
    • /
    • 2018
  • In this paper, a new $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ high entropy alloy (HEA) is identified as a strong candidate for the single face-centered cubic (FCC) structure screened using the upgraded TCFE2000 thermodynamic CALPHAD database. The $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ HEA is fabricated using the mechanical (MA) procedure and pressure-less sintering method. The $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ HEA, which consists of elements with a large difference in melting point and atomic size, is successfully fabricated using powder metallurgy techniques. The MA behavior, microstructure, and mechanical properties of the $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ HEA are systematically studied to understand the MA behavior and develop advanced techniques for fabricating HEA products. After MA, a single FCC phase is found. After sintering at $900^{\circ}C$, the microstructure has an FCC single phase with an average grain size of $18{\mu}m$. Finally, the $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ HEA has a compressive yield strength of 302 MPa.