• 제목/요약/키워드: Grain Structure

검색결과 1,243건 처리시간 0.033초

관교의치용 Au-Ag-Cu-Pt-Zn 합금의 시효경화성과 관련된 상변태와 입계석출 (Phase transformation and grain boundary precipitation related to the age-hardening of an Au-Ag-Cu-Pt-Zn alloy for crown and bridge fabrication)

  • 조미향
    • 대한치과기공학회지
    • /
    • 제34권4호
    • /
    • pp.345-352
    • /
    • 2012
  • Purpose: The age-hardening mechanism of an Au-Ag-Cu-Pt-Zn alloy for crown and bridge fabrication was investigated by means of hardness test, X-ray diffraction study and field emission scanning electron microscopic observation. Methods: Before hardness testing, the specimens were solution treated and then were rapidly quenched into ice brine, and were subsequently aged isothermally at $400-450^{\circ}C$ for various periods of time in a molten salt bath and then quenched into ice brain. Hardness measurements were made using a Vickers microhardness tester. The specimens were examined at 15 kV using a field emission scanning electron microscope. Results: By the isothermal aging of the solution-treated specimen at $450^{\circ}C$, the hardness increased rapidly in the early stage of aging process and reached a maximum hardness value. After that, the hardness decreased slowly with prolonged aging. However, the relatively high hardness value was obtained even with 20,000 min aging. By aging the solution-treated specimen, the f.c.c. Au-Ag-rich ${\alpha}_0$ phase was transformed into the Au-Ag-rich ${\alpha}_1$ phase and the AuCu I ordered phase. Conclusion: The hardness increase in the early stage of aging process was attributed to the formation of lattice strains by the precipitation of the Cu-rich phase and then subsequent ordering into the AuCu I-type phase. The decrease in hardness in the later stage of aging process was due to the release of coherency strains by the coarsening of tweed structure in the grain interior and by the growth and coarsening of the lamellar structure in the grain boundary. The increase of inter-lamellar space contributed slightly to the softening compared to the growth of lamellar structure toward the grain interior.

고체 추진기관 통합 설계 시스템 개발 (Development of an Integrated Design System for Solid Rocket Motors)

  • 이강수;김원훈;황태경;배주찬;양준서;이도형;석정호;최병욱;권혁선
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.207-210
    • /
    • 2008
  • 고체 추진기관을 빠르고 정확하게 설계하기 위해 통합 설계 시스템을 개발하였다. 이 시스템에는 체계 요구 조건으로부터 전체적인 크기를 결정하는 사이징 설계 모듈과 구조체 설계, 그레인 설계, 성능 예측 모듈과 같이 네 개의 모듈로 구성되어 고체 추진 기관의 기본설계를 수행할 수 있게 개발 되었다. 본 연구에서 개발된 시스템을 사용하여 고체 추진기관의 기본 설계를 하는 과정은 다음과 같다. 먼저, 체계 요구 조건으로부터 전체적인 크기를 결정한 후 구조체 및 그레인 설계에 이용한다. 구조체설계 모듈로 구조체의 기본 설계를 수행 한 후 이를 이용해 그레인 설계 모듈로 그레인 기본 설계와 이 후 성능 계산에 필요한 데이터를 생성할 수 있다. 성능 해석 모듈은 기본 설계가 완료된 추진 기관의 성능을 예측하여 체계 요구 조건에 부합되는지를 확인하여 재설계 여부를 결정한다.

  • PDF

온간단조에서의 소성변형과 결정입자 변화와의 관계 (Study on the Relationship between Plastic Deformation and Crystal Grain Change in Warm Forging)

  • 제진수;김재훈
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.461-472
    • /
    • 1996
  • The relationship between plastic deformation and crystal grain change in warm forging processes of SM10C carbon steel is studied. If the carbon steel is deformed at warm forging temperature(about recrystallization range), material properties are changed due to microstructural chanre of the crystal grain and cementite of the internal part. Some experimental values are investigated in terms of the elliptic degree of cementite, the grain size of cementite and ferrite grain size. When plastic deformation proceeds, the elliptic degree of cementite becomes larger and the grain size of cementite particle becomes small. In addition, the size of ferrite grain becomes fines by recrystallization. The elliptic degree of cementite has a considerable effect on formability. The distribution of effective strain in the forging was calculated by the rigid visco-plastic FEM analysis. The effective strain distribution obtained from the FEM simulation is compared with the experimental result, At the level of effective strain 0.3, dynamic recovery and dynamic recrystallization begin and at the level of over 2.5, the organization of material has better internal structure that is suitable for the following cold forming.

Residual Strength Estimation of Decayed Wood by Insect Damage through in Situ Screw Withdrawal Strength and Compression Parallel to the Grain Related to Density

  • OH, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권6호
    • /
    • pp.541-549
    • /
    • 2021
  • This paper reports a method to evaluate the residual strength of insect-damaged radiata pine lumber, such as the screw withdrawal strength as a semi-destructive method and a compression parallel to the grain test to assess the density changes after exposure to outdoor conditions. The screw withdrawal strength test was used as a semi-destructive method to estimate the residual density of decayed lumber. A compression parallel to the grain test was applied to evaluate the residual density. Three variables, such as the screw withdrawal strength, compression parallel to the grain, and residual density, were analyzed statistically to evaluate their relationships. The relationship between the residual density and screw withdrawal strength showed a good correlation, in which the screw withdrawal strength decreased with decreasing density. The other relationship between the residual density and compression parallel to the grain was also positively correlated; the compression parallel to the grain strength decreased with decreasing density. Finally, the correlation between the three variables was statistically significant, and the mutual correlation coefficients showed a strong correlation between the three variables. Hence, these variables are closely correlated. The test results showed that the screw withdrawal strength could be used as a semi-destructive method for an in situ estimation of an existing wood structure. Moreover, the method might approximate the residual density and compression parallel to the grain if supplemented with additional data.

Behaviour of interfacial layer along granular soil-structure interfaces

  • Huang, Wenxiong;Bauer, Erich;Sloan, Scott W.
    • Structural Engineering and Mechanics
    • /
    • 제15권3호
    • /
    • pp.315-329
    • /
    • 2003
  • As shear occurs along a soil-structure interface, a localized zone with a thickness of several grain diameters will develop in soil along the interface, forming an interfacial layer. In this paper, the behaviour of a soil-structure interface is studied numerically by modelling the plane shear of a granular layer bounded by rigid plates. The mechanical behaviour of the granular material is described with a micro-polar hypoplastic continuum model. Numerical results are presented to show the development of shear localization along the interface for shearing under conditions of constant normal pressure and constant volume, respectively. Evolution of the resistance on the surface of the bounding plate is considered with respect to the influences of grain rotation.

열처리온도에 따른 CdS박막 특성 (Characteristics of CdS thin film depending on annealing temperature)

  • 김성구;박계춘;유용택
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권1호
    • /
    • pp.49-56
    • /
    • 1994
  • Polycrystalline CdS thin films were deposited by using EBE method and its crystal structure, surface morphology, electrical and optical properties as a function of annealing temperature were investigated. It was found that optimum growth conditions were substrate temperature annealing temperature 300[.deg. C]. The films were hexagonal structure preferred(002) plane and maximum grain size was 421[.angs.]. As the results, resistivity and optical transmittance of CdS thin films were $8.3{\times}{10^3}$[.ohm.cm] and 89[%] respectively.

  • PDF

BaTiO3에서 Dy2O3 첨가가 결정구조, 입자성장 및 유전특성에 미치는 영향 (The effect of Dy2O3 addition on crystal structure, grain growth, and dielectric properties in BaTiO3)

  • 안원기;최문희;김민기;문경석
    • 한국결정성장학회지
    • /
    • 제32권4호
    • /
    • pp.136-142
    • /
    • 2022
  • Dy2O3 첨가량에 따른 BaTiO3의 결정구조, 입자성장 거동 및 유전특성에 대해 연구하였다. 고상합성법으로 (100-x) BaTiO3-xDy2O3(mol%, x = 0, 0.5, 1.0, 2.0) 비율로 합성하고, 공기 중 1250℃에서 2시간 동안 소결하였다. Dy2O3가 첨가되면서 소결체의 결정구조는 정방정계 구조에서 입방정계 구조로 전이되어 tetragonality(c/a)가 감소하였다. 또한, Dy2O3가 첨가 시 Ba12Dy4.67Ti8O35은 이차상이 확인되었다. Dy2O3의 첨가량이 증가할수록 소결 후 평균입자의 크기가 감소하고 비정상 입자성장 거동을 보였다. 이를 통해 Dy2O3가 첨가된 BaTiO3의 입자성장은 이차원 핵생성 및 성장에 의해 입자성장이 일어나고 계면 반응이 지배적인 것으로 판단할 수 있다. 또한, 결정구조 및 미세구조와 유전특성과의 상관관계에 대해서 고찰하였다.

Single-Domain-Like Graphene with ZnO-Stitching by Defect-Selective Atomic Layer Deposition

  • 김홍범;박경선;;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.329-329
    • /
    • 2016
  • Large-area graphene films produced by means of chemical vapor deposition (CVD) are polycrystalline and thus contain numerous grain boundaries that can greatly degrade their performance and produce inhomogeneous properties. A better grain boundary engineering in CVD graphene is essential to realize the full potential of graphene in large-scale applications. Here, we report a defect-selective atomic layer deposition (ALD) for stitching grain boundaries of CVD graphene with ZnO so as to increase the connectivity between grains. In the present ALD process, ZnO with hexagonal wurtzite structure was selectively grown mainly on the defect-rich grain boundaries to produce ZnO-stitched CVD graphene with well-connected grains. For the CVD graphene film after ZnO stitching, the inter-grain mobility is notably improved with only a little change in free carrier density. We also demonstrate how ZnO-stitched CVD graphene can be successfully integrated into wafer-scale arrays of top-gated field effect transistors on 4-inch Si and polymer substrates, revealing remarkable device-to-device uniformity.

  • PDF

12Ce-TZP 세라믹스의 소결에서의 CaO의 역할 (Role of CaO in the Sintering of 12Ce-TZP Ceramics)

  • 박정현;문성환;박한수
    • 한국세라믹학회지
    • /
    • 제29권4호
    • /
    • pp.265-272
    • /
    • 1992
  • Role of CaO in the sintering of 12Ce-TZP ceramics was studied. The addition of small amounts of CaO increase the densification rate of 12Ce-TZP by altering lattice defect structure and the diffusion coefficient of the rate controlling species, namely cerium and zirconium cations. CaO also inhibits grain growth during sintering and allows the sintering process to proceed to theoretical density by maintaining a high diffusion flux of vacancies from the pores to the grain boundaries. The inhibition of grain growth is accomplished by the segregation of solute at the grain boundaries, causing a decrease in the grain boundary mobility. The segregation of calcium was revealed by AES study.

  • PDF

Mg-Sn-Al-Zn 마그네슘 합금 간접압출재의 미세조직 및 소성이방성 (Microstructure and Yield Asymmetry Behavior of Indirect-extruded Mg-Sn-Al-Zn Alloys)

  • 박성혁;김영민;김하식;임창동;유봉선
    • 소성∙가공
    • /
    • 제21권5호
    • /
    • pp.324-329
    • /
    • 2012
  • Mg-(9-x)Sn-xAl-1Zn (x=1, 2, 3 and 4 wt.%) alloys were subjected to indirect extrusion, and the microstructure and mechanical properties of the as-extruded Mg-Sn-Al-Zn (TAZ) alloys were investigated. The TAZ 811 alloy exhibited a finer grain structure than the TAZ 541 alloy due to a larger number of Mg2Sn particles, which pinned the grain boundaries and prevented growth of recrystallized grains. The TAZ alloys showed an unusual yield asymmetry behavior. The tension-compression yield asymmetry increased with decreasing average grain size. The TAZ 811 alloy with a small grain size exhibited a larger yield asymmetry than that of the TAZ 541 alloy having a relatively large grain size, which is mainly attributed to the low Al content and large number of second phase particles in the TAZ 811 alloy.