• Title/Summary/Keyword: Grain Structure

Search Result 1,246, Processing Time 0.025 seconds

A Study on Behavior of Elastic Settlement of Coastal Structure on Sandy Ground (모래층 지반 안벽구조물의 탄성침하거동 연구)

  • Yoo, Nam-Jae;Jun, Sang-Hyun;Jeon, Jin-Yong
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.201-208
    • /
    • 2007
  • This paper is research results of investigating the elastic settlement behavior of the coastal caisson structure built on the sandy deposit by comparing results of centrifuge model experiments and those of existing methods of estimating elastic settlement. Basic soil property tests such as specific gravity test, grain size distribution test and organic content test with disturbed soil sampled from the site were carried out. The centrifuge experiment of model satisfying the required design criteria was performed under 50 of artificial accelerated gravitational force condition. The Centrifuge model experimental results were compared and analyzed with the current methods of estimating settlement based on the elastic modulus obtained from the results of odeometer tests and empirical methods from literature reviews.

  • PDF

Development of high dielectric PLT thin films by laser processing for high power applications (레이저 공정을 이용한 전력용 고유전을 PLT 박막 개발)

  • Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.378-381
    • /
    • 1998
  • PLT(28) ($Pb_{0.72}La_{0.28}Ti_{0.93}O_3$) dielectric thin films have been deposited on Pt/Ti/$SiO_2$/Si substrates in situ by a laser ablation. We have systematically changed the laser fluence from $0.5\;J/cm^2$ to $3\;J/cm^2$, and deposition temperature from $450^{\circ}C$ to $700^{\circ}C$. The surface morphology was changed from planar grain structure to columnar structure as the nucleation energy was increased. The PLT thin film with columnar structure showed good dielectric properties. It is shown that the deposition temperature strongly affect the film nucleation compared with the laser fluence.

  • PDF

Analysis of the Genetic Diversity and Population Structure of Amaranth Accessions from South America Using 14 SSR Markers

  • Oo, Win Htet;Park, Yong-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.4
    • /
    • pp.336-346
    • /
    • 2013
  • Amaranth (Amaranthus sp. L.) is an important group of plants that includes grain, vegetable, and ornamental types. Centers of diversity for Amaranths are Central and South America, India, and South East Asia, with secondary centers of diversity in West and East Africa. The present study was performed to determine the genetic diversity and population structure of 75 amaranth accessions: 65 from South America and 10 from South Asia as controls using 14 SSR markers. Ninety-nine alleles were detected at an average of seven alleles per SSR locus. Model-based structure analysis revealed the presence of two subpopulations and 3 admixtures, which was consistent with clustering based on the genetic distance. The average major allele frequency and polymorphic information content (PIC) were 0.42 and 0.39, respectively. According to the model-based structure analysis based on genetic distance, 75 accessions (96%) were classified into two clusters, and only three accessions (4%) were admixtures. Cluster 1 had a higher allele number and PIC values than Cluster 2. Model-based structure analysis revealed the presence of two subpopulations and three admixtures in the 75 accessions. The results of this study provide effective information for future germplasm conservation and improvement programs in Amaranthus.

The Structure and Electrochromic Characteristics of $WO_3$ thin Film with deposition Conditions and Post-Annealing (증착조건 및 후-열처리에 따른 $WO_3$박막의 구조와 전기착색 특성)

  • 조형호;임원택;안일신;이창효
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.141-147
    • /
    • 1999
  • The electrochromic characteristics of tungsten oxide films are largely affected by deposition conditions, such as substrate temperature and gas flow rate and also post-annealing. We have considered gas flow rate and temperature as important factors having an effect on an electrical, optical phenomenon and structural variation of $WO_3$ . The tungsten oxide films were deposited onto ITO(20$\Omega\box$, 1000$\AA$) using rf magnetron sputtering method. In particular, the films deposited at room temperature were annealed at various temperatures in air. All specimens had crystal structure except one being deposited at room temperature with nearly amorphous-like structure. The specimen deposited at $100^{\circ}C$ had a structure in which the increase in deposition temperature. The specimen deposited at $100^{\circ}C$ had a structure in which the cations$(Li^+)$ are easily movable because of void boundaries induced by regularly arrayed large grains. The specimen deposited at $300^{\circ}C$ had a dense structure with small grains but it exhibited the large mobility and charge density in $WO_3$ because of distinct grain boundaries.

  • PDF

Characteristics of metal-induced crystallization (MIC) through a micron-sized hole in a glass/Al/$SiO_2$/a-Si structure (Glass/Al/$SiO_2$/a-Si 구조에서 마이크론 크기의 구멍을 통한 금속유도 실리콘 결정화 특성)

  • Oh, Kwang H.;Jeong, Hyejeong;Chi, Eun-Ok;Kim, Ji Chan;Boo, Seongjae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.59.1-59.1
    • /
    • 2010
  • Aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) is studied with the structure of a glass/Al/$SiO_2$/a-Si, in which the $SiO_2$ layer has micron-sized laser holes in the stack. An oxide layer between aluminum and a-Si thin films plays a significant role in the metal-induced crystallization (MIC) process determining the properties such as grain size and preferential orientation. In our case, the crystallization of a-Si is carried out only through the key hole because the $SiO_2$ layer is substantially thick enough to prevent a-Si from contacting aluminum. The crystal growth is successfully realized toward the only vertical direction, resulting a crystalline silicon grain with a size of $3{\sim}4{\mu}m$ under the hole. Lateral growth seems to be not occurred. For the AIC experiment, the glass/Al/$SiO_2$/a-Si stacks were prepared where an Al layer was deposited on glass substrate by DC sputter, $SiO_2$ and a-Si films by PECVD method, respectively. Prior to the a-Si deposition, a $30{\times}30$ micron-sized hole array with a diameter of $1{\sim}2{\mu}m$ was fabricated utilizing the femtosecond laser pulses to induce the AIC process through the key holes and the prepared workpieces were annealed in a thermal chamber for 2 hours. After heat treatment, the surface morphology, grain size, and crystal orientation of the polycrystalline silicon (pc-Si) film were evaluated by scanning electron microscope, transmission electron microscope, and energy dispersive spectrometer. In conclusion, we observed that the vertical crystal growth was occurred in the case of the crystallization of a-Si with aluminum by the MIC process in a small area. The pc-Si grain grew under the key hole up to a size of $3{\sim}4{\mu}m$ with the workpiece.

  • PDF

Effect of Soil Structure on Soil-Water Characteristic in Unsaturated Soil (불포화토에서 흙의 구조가 흙-함수특성에 미치는 영향)

  • Hwang, Woong-Ki;Kang, Ki-Min;Kim, Tae-Hyung;Song, Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.33-42
    • /
    • 2012
  • The purpose of this study is to determine the effect of soil grain size and its distribution on soil-water characteristic. To do this, soil-water characteristic tests were conducted on Saemangeum silt using the axis translation technique. For comparison, the test was also conducted on Jumunjin sand. Using the test results, the soil-water characteristic curves (SWCCs) of Saemangeum silt and Jumunjin sand were predicted by Van Genuchten model. By comparison and analysis between two SWCCs, the silt shows higher values of matric suction, water content, and air entry value than the sand. On the other hand, the sand has higher values of Van Genuchten model parameters of ${\alpha}$, $n$, $m$ than the silt. It indicates that the SWCC is significantly dependent on the structure of soils. In other words, if a soil has relatively high grain size and poor grain size distribution curve, the values of saturated volumetric water content, residual volumetric water content, and air entry value are small, and the variation of volumetric water content is high in accordance with the matric suction variation, and consequently it shows a narrow range of funicular region.

Effects of Substrate and Annealing Temperature on the Characteristics of Mn-Ni oxide Thin Films (Mn-Ni계 산화물 박막의 특성에 대한 기판과 열처리 온도의 영향)

  • Kim, Cheol-Su;Cho, Seong-Ho;Lee, Yong-Seong;Cho, Byeong-Ryeol;Kim, Byeong-Su
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.424-428
    • /
    • 1998
  • Mn-Ni oxide thin films for NTC thermistor application were deposited on alumina substrates by using rf magnetron sputter. Effects of various substrate temperatures and annealing temperatures on the microstructure. crystal phase, resistivity and B constant were investigated. Microstructure of the films deposited below 178$^{\circ}C$ was fibrous microcrystalline and at 32$0^{\circ}C$and 40$0^{\circ}C$their microstructure was changed to columnar grain structure. After annealing at 90$0^{\circ}C$, the microstructure was transformed to equiaxed grain structure. Most of the phases were mixture of cubic spinel and $Mn_2O_2$ The crystal phase of the film deposited at 40$0^{\circ}C$ was changed to cubic spinel after annealing above 700"c. As the substrate temperature increased, the resistivity and B constant were greatly decreased, and these values become low and stable after annealing between $600^{\circ}C$and $700^{\circ}C$, All thin films deposited in the present study showed NTC thermistor characteristicsstics.

  • PDF

Improvement in Mechanical Properties of Cast Magnesium Alloy through Solid-solution Hardening and Grain Refinement (고용 강화 및 결정립 미세화를 통한 마그네슘 합금 주조재의 기계적 물성 향상)

  • Kim, Sang-Hoon;Moon, Byoung-Gi;You, Bong-Sun;Park, Sung-Hyuk
    • Journal of Korea Foundry Society
    • /
    • v.37 no.6
    • /
    • pp.207-216
    • /
    • 2017
  • This study investigated the effects of the addition of Zn, Ca, and SiC on the microstructure and mechanical properties of Mg-Al alloys. The tensile properties of homogenized Mg-xAl (x = 6, 7, 8, and 9 wt.%) alloys increased with increasing Zn content by the solid-solution strengthening effect. However, when the added Zn content exceeded the solubility limit, the strength and ductility of the alloys decreased greatly owing to premature fracture caused by undissolved coarse particles or local melting. Among the Mg-xAl-yZn alloys tested in this study, the AZ74 alloy showed the best tensile properties. However, from the viewpoints of the thermal stability, castability, and tensile properties, the AZ92 alloy was deemed to be the most suitable cast alloy. Moreover, the addition of a small amount (0.17 wt.%) of SiC reduced the average grain size of the AZ91 alloy significantly, from $430{\mu}m$ to $73{\mu}m$. As a result, both the strength and the elongation of the AZ91 alloy increased considerably by the grain-boundary hardening effect and the suppression of twinning behavior, respectively. On the other hand, the addition of Ca (0.5-1.5 wt.%) and a combined addition of Ca (0.5-1.5 wt.%) and SiC (0.17 wt.%) increased the average grain size of the AZ91 alloy, which resulted in a decrease in its tensile properties. The SiC-added AZ92 alloy exhibited excellent tensile properties (YS 125 MPa, UTS 282 MPa, and EL 12.3%), which were much higher than those of commercial AZ91 alloy (YS 93 MPa, UTS 192 MPa, and EL 7.0%). The fluidity of the SiC-added AZ92 alloy was slightly lower than that of the AZ91 alloy because of the expansion of the solid-liquid coexistence region in the former. However, the SiC-added AZ92 alloy showed better hot-tearing resistance than the AZ91 alloy owing to its refined grain structure.

Grain growth behavior of porous Al2O3 with addition of La2O3 prepared via freeze-casting (동결주조로 성형한 La2O3가 첨가된 Al2O3 다공체의 소결 중 입자성장 거동)

  • Kim, Sung-Hyun;Woo, Jong-Won;Jeon, Sang-Chae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.6
    • /
    • pp.231-238
    • /
    • 2022
  • To secure the mechanical strength of porous Al2O3 ceramics, which can be utilized for filters and catalyst supports is essential for their functionality and durability. Superior mechanical strength would be obtained by tailoring the densification and grain growth during sintering. This study deals with grain growth behavior of a freeze-casted Al2O3 with addition of La2O3. In a temperature range between 1400 and 1600℃, variations of average grain size with sintering time and temperature were observed and analyzed with Gtn-G0n = kt and with k = k0exp(-Ea/RT). As a result, n value and activation energy (Ea) for grain growth were calculated as 3 and 489.09 kJ/mol, respectively. These commonly confirms retardation effect of the La addition during sintering of Al2O3 porous structure. More accurate analysis on the La effect can be followed to provide useful guidance for the selection of additives for better mechanical strength in Al2O3 porous structures.

Assessment of China's Policies Regarding Grain Import and Export

  • Junghwan Choi;Sangseop Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.267-279
    • /
    • 2023
  • The objective of this paper is to examine the legal framework governing the import and export of grain in China, a pivotal factor in shaping policies aimed at stabilizing South Korea's foreign trade and grain imports. Through this analysis, it is observed that China's foreign trade system, governed by the Foreign Trade Act, exhibits a notable absence of clear delineation regarding the scope and responsibility for the delegation of authority to foreign trade management agencies. In contrast, Korea's Foreign Trade Law, along with its enforcement decree and management regulations, explicitly outlines the scope and responsibilities pertaining to the delegation of authority to foreign trade management. However, in the case of China's revised Foreign Trade Law, there exists a lack of precision in specifying the delegation of authority to foreign trade management. This creates a potential for discretionary intervention by local governments or other administrative bodies. While China's legal system concerning grain imports and exports aligns with WTO regulations in its institutional framework, attention is warranted due to the vagueness in laws or regulations, as well as the presence of irrational and non-transparent procedures during system operation. As conclusion remarks, while China's legal structure related to grain imports and exports conforms to WTO guidelines overall, the identified issues such as legal ambiguity and non-transparent procedures underscore the need for caution. To safeguard against potential challenges in future trade interactions with China, proactive measures are crucial to address these concerns.