• Title/Summary/Keyword: Grain Structure

Search Result 1,246, Processing Time 0.025 seconds

Dielectric Properties of (Ba0.7Sr0.3-3x/2Lax)(Ti0.9Zr0.1)O3 Ceramics with La3+ Substitution for Sr2+-Site ((Ba0.7Sr0.3-3x/2Lax)(Ti0.9Zr0.1)O3 세라믹의 Sr2+-자리에 대한 La3+ 치환에 따른 유전 특성)

  • Si Hyun Kim;Ju Hye Kim;Eung Soo Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.465-474
    • /
    • 2023
  • The effects of La3+ substitution for Sr2+-site on the crystal structure and the dielectric properties of (Ba0.7Sr0.3-3x/2Lax) (Ti0.9Zr0.1)O3 (BSLTZ) (0.005 ≤ x ≤ 0.02) ceramics were investigated. The structural characteristics of the BSLTZ ceramics were quantitatively evaluated using the Rietveld refinement method from X-ray diffraction (XRD) data. For the specimens sintered at 1,550 ℃ for 6 h, a single phase with a perovskite structure and homogeneous microstructure were observed for the entire range of compositions. With increasing La3+ substitution (x), the unit cell volume decreased because the ionic size of La3+ (1.36 Å) ions is smaller than that of Sr2+ (1.44 Å) ions. With increasing La3+ substitution (x), the tetragonal phase fraction increased due to the A-site cation size mismatch effect. Dielectric constant (εr) increased with the La3+ substitution (x) due to the increase in tetragonality (c/a) and the average B-site bond valence of the ABO3 perovskite. The BSLTZ ceramics showed a higher dielectric loss due to the smaller grain size than that of (Ba0.7Sr0.3)(Ti0.9Zr0.1)O3 ceramics. BSLTZ (x = 0.02) ceramics met the X7R specification proposed by the Electronic Industries Association (EIA).

Fabrication and characteristics of modified PZT System doped With $La_2O_3$ ($La_2O_3$가 첨가된 modified PZT계의 제조 및 특성)

  • 황학인;박준식;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.418-427
    • /
    • 1997
  • The effect of $La_2O_3$ as a dopant on the microstructure structure, crystal structure and electrical properties was studied. $0.05Pb(Sn_{0.5}Sb_{0.5})O_3+0.11PbTiO_3+0.84PbZroO_3+0.4Wt%MnO_2$ (=0.05PSS +0.11PT+0.84PZ+0.4wt%$MnO_2$) systems doped with 0, 0.1, 0.3, 0.5, 0.7, 1, 3, 5 mole% $La_2O_3$ were fabricated and investigated sintering density, crystal structure and micro-structure. The sintered 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system doped with $La_2O_3$showed sintering density of the range of 7.683 g/㎤ of 0 mole% doping to 7.815 g/㎤ of 0 mole% doping. The average grain sizes in the range of 0 to 5 mole% $La_2O_3$were decreased from 9.0 $\mu\textrm{m}$ to 1.3 $\mu\textrm{m}$. X-ray diffraction investigation of sintered bodies showed that solid solutions were formed between 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system and $La_2O_3$ in the range of 0 to 1 mole% but second phases were formed in case of 3, 5 mole%. Dielectric constants at 1 kHz were increased with 0 to 3 mlole% $La_2O_3$ before and after poling at the condition of 5 $KV_{DC}$/mm at $120^{\circ}C$ or $140^{\circ}C$ during 20 minutes. All Dielectric losses at 1 kHz were less than 1%, Curie temperatures were $208^{\circ}C$, $183^{\circ}C$, $152^{\circ}C$ and $127^{\circ}C$ at 0, 0.5, 1, 3 mole% $La_2O_3$ respectively. The values of $K_p$ were increased from 0 to 3 mole% $La_2O_3$ after poling at condition of 5 $KV_{DC}$mm at the condition of $120^{\circ}C$ or $140^{\circ}C$. The case of 0.7 mole% $La_2O_3$doped 0.05PSS+0.11PT+0.84PZ+0.4wt%$MnO_2$ system showed $K_p$ of 14.5% by poling at $140^{\circ}C$ during 20 minutes.

  • PDF

Characteristics and Distribution Pattern of Carbonate Rock Resources in Kangwon Area: The Gabsan Formation around the Mt. Gachang Area, Chungbuk, Korea (강원 지역에 분포하는 석회석 자원의 특성과 부존환경: 충북 가창산 지역의 갑산층을 중심으로)

  • Park, Soo-In;Lee, Hee-Kwon;Lee, Sang-Hun
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.437-448
    • /
    • 2000
  • The Middle Carboniferous Gabsan Formation is distributed in the Cheongrim area of southern Yeongwol and the Mt. Gachang area of Chungbuk Province. This study was carried out to investigate the lithological characters and geochemical composition of the limestones and to find out controlling structures of the limestones of the formation. The limestones of the Gabsan Formation are characterized by the light gray to light brown in color and fine and dense textures. The limestone grains are composed of crinoid fragments, small foraminfers, fusulinids, gastropods, ostracods, etc. Due to the recrystallization, some limestones consist of fine crystalline calcites. The chemical analysis of limestones of the formation was conducted to find out the contents of CaO, MgO, Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$. The content of CaO ranges from 49.78-60.63% and the content of MgO ranges from 0.74 to 4.63% The contents of Al$_2$O$_3$ and Fe$_2$O$_3$ are 0.02-0.55% and 0.02${\sim}$0.84% , respectively. The content of SiO$_2$ varies from 1.55 to 4.80%, but some samples contain more than 6.0%. The limestones of the formation can be grouped into two according to the CaO content: One is a group of which CaO content ranges from 49.78 to 56.26% and the other is a group of which CaO content varies from 59.36 to 60.38%. In the first group, the contents of Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ range very irregularly according to the CaO content. In the second group, the values of MgO, Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ are nearly same. Detailed structural analysis of mesoscopic structures and microstructures indicates the five phase of deformation in the study area. The first phase of deformation(D$_1$) is characterized by regional scale isoclinal folds, and bedding parallel S$_1$ axial plane foliation which is locally developed in the mudstone and sandstone. Based on the observations of microstructures, S$_1$ foliations appear to be developed by grain preferred orientation accompanying pressure-solution. During second phase of deformation, outcrop scale E-W trending folds with associated foliations and lineations are developed. Microstructural observations indicate that crenulation foliations were formed by pressure-solution, grain boundary sliding and grain rotation. NNW and SSE trending outcrop scale folds, axial plane foliations, crenulation foliations, crenulation lineations, intersection lineations are developed during the third phase of deformation. On the microscale F$_3$ fold, axial plane foliations which are formed by pressure solution are well developed. Fourth phase of deformation is characterized by map scale NNW trending folds. The pre-existing planar and linear structures are reoriented by F$_4$ folds. Fifth phase of deformation developed joints and faults. The distribution pattern of the limestones is mostly controlled by F$_1$ and F$_4$ folds.

  • PDF

Mechanical Alloying and the Consolidation Behavior of Nanocrystalline $Ll_2$ A$1_3$Hf Intermetallic Compounds (Cu 첨가에 따른 nanocrystalline ${Ll_2}{Al_3}Hf$ 금속간 화합물의 기계적 합금화 거동 및 진공열간 압축성형거동)

  • Kim, Jae-Il;O, Yeong-Min;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.629-635
    • /
    • 2001
  • To improve the ductility of $A1_3Hf$ intermetallics, which are the potential high temperature structural materials, the mechanical alloying behavior. the effect of Cu addition on the $Ll_2$ phase formation and the behavior of vacuum hot-pressed consolidation were investigated. During the mechanical alloying by SPEX mill, the $Ll_2 A1_3Hf$ intermetallics with the grain size of 7~8nm was formed after 6 hours of milling in Al-25at.%Hf system. The $Ll_2$ Phase of Al_3Hf$ intermetallics with the addition of 12.5at.%Cu, similar to that of the binary Al-25at.% Hf, was formed, but the milling time necessary for the formationof the $Ll_2$ phase was delayed form 6 hours to 10 hours. The lattice parameter of ternary $Ll_2(Al+Cu)_3Hf$ intermetallics decreased with the increase of Cu content. The onset temperature of $Ll_2$ to $D0_{23}$ phase in $Al_3Hf$ intermetallics was around 38$0^{\circ}C$, the temperature upon completion varied from 48$0^{\circ}C$ to 5$50^{\circ}C$ as the annealing time. The onset temperature of $Ll_2$ to $D0_{23}$ phase transformation in $(Al+ Cu)_3Hf$ intermetallics increased with the amount of Cu and the highest onset temperature of $700^{\circ}C$ was achieved by the Cu addition of 10at.%. The relative density increased from 89% to 90% with the Cu addition of 10at.% in $Al_3Hf$ intermetallics hot-pressed in vacuum under 750MPa at 40$0^{\circ}C$ for 3 hours. The relative density of 92.5% was achieved without the phase transformation and the grain growth as the consolidation temperature increased from 40$0^{\circ}C$ to 50$0^{\circ}C$ in $(Al+Cu)_3Hf$ intermetallics hot-pressed in vacuum under 750MPa for 3 hours.

  • PDF

The Effect of Au Addition on the Hardening Mechanism in Ag-25wt% Pd-15wt% Cu (Ag-25wt% Pd-15wt% Cu 3원합금(元合金) 및 Au 첨가합금(添加合金)의 시효경화특성(時效京華特性))

  • Bea, B.J.;Lee, H.S.;Lee, K.D.
    • Journal of Technologic Dentistry
    • /
    • v.20 no.1
    • /
    • pp.37-49
    • /
    • 1998
  • The specimens used were Ag-25 Pd-15 Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electric furnace and centrifugal casting machine in Ar atmosphere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at $350{\sim}550^{\circ}C$ Age- hardening characteristics of the small Au-containing Ag-Pd-Cu dental alloys were investigated by means of hardness testing. X-ray diffraction and electron microscope observations, electrical resistance, ergy dispersed spectra and electron probe microanalysis. Principal results are as follows : Hardening occured in two stages, i.e., stage I in low temperature and stage II in high temperature regions, during continuous aging. The case of hardening in stage I was due to the formation of the $L1_0$ type face-centered tetragonal PdCu-ordered phase in the grain interior and hardening in stage I was affected by the Cu concentration. In stage II, decomposition of the ${\alpha}$ solid solution to a PdCu ordered phase($L1_0$ type) and an Ag-rich ${\alpha}2$ phase occurred and a discontinuous precipitation occurred at the grain boundary. From the electron microscope study, it was conclued that the cause of age-hardening in this alloy is the precipitation of the PdCu ordered phase, which has AuCu I type face-centered tetragonal structure. Precipetation procedure was ${\alpha}{\to}{\alpha}+{\alpha}_2+PdCu {\to}{\alpha}_1+{\alpha}_2+PdCu$ at Pd/Cu = 1.7 Ag-Pd-Cu alloy is more effective dental alloy as ageing treatment and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF

Histochemical Detection of Ionic Zinc in the Rat Olfactory Mucosa: Zinc Selenium Autometallography ($ZnSe^{AMG}$) (랫드 후각점막내 Zinc 이온의 조직화학적 동정)

  • Nam, Dong-Woo;Sun, Yuan-Jie;Kim, Sung-Joo;Kim, Yong-Kuk;Kim, Soo-Jin;Yu, Yun-Cho;Jeong, Young-Gil;Jo, Seung-Mook
    • Applied Microscopy
    • /
    • v.33 no.2
    • /
    • pp.145-154
    • /
    • 2003
  • The present study was designed to demonstrate ionic zinc in the rat nasal mucosa by means of zinc selenium autometallography ($ZnSe^{AMG}$). Rats were given sodium selenide either intraperitoneally (i.p) or intranasally (i.n). Prior to the i.n. administration the rats were anesthetized with pentobarbital sodium (30 mg/kg, i.p.). A thin plastic tube coupled to a Hamilton syringe was then inserted into the right nostril and $10{\mu}l$ of the solution was instilled. For the i.p. administration non-anesthetized rats were given $100{\mu}l$ of the sodium selenide solution (10 mg/kg). Control rats were instilled with saline. After 2 hrs survival, the rats were anaesthetized and transcardially perfused with 3% glutaraldehyde. The olfactory area was removed and put into same fixative. The nose was then sectioned ($30{\mu}m$) horizontally, autometallography (AMG) was performed according to Danscher et al. (1997). After silver enhancement, fine AMG grains were scattered in the whole length of the olfactory epithelium containing olfactory receptor neurons, sustentacular and basal cells. However, much higher concentration of the AMG grains occupied near the surface and in the basal region of the olfactory epithelium. Both groups of i.p. and i.n. administration showed almost same level in the concentration of the AMG grains. In i.n. group, few AMG grains were also found in olfactory nerves of the lamina propria, suggesting zinc transport into the olfactory bulb via olfactory axons. At the electron microscopic level, the AMG grains were most entirely found in the supporting cells of the olfactory epithelium, and they were mostly localized in lysosome-like organelles. The i.n. group showed various signs of tissue damage of the olfactory mucosa, where dense concentration of AMG grains were localized at crystalloid structures. The present study demonstrated dense population of ionic zinc in the rat olfactory epithelium. zinc may play a role in the olfactory functioin and in the pathogenesis of the neurodegerative disorders affecting nose.

Effect of PLA2 Inhibitor Rutin on Endotoxin-Induced Acute Lung Injury (내독소로 유도된 급성폐손상에서 PLA2의 억제제인 Rutin의 효과)

  • Kim, Seong-Eun;Lee, Young-Man;Park, Won-Hark
    • Applied Microscopy
    • /
    • v.34 no.1
    • /
    • pp.31-42
    • /
    • 2004
  • Acute respiratory distress syndrome (ARDS) is a kind of acute lung injury characterized by inflammatory disruption of alveolar-capillary barrier and notorious for its high mortality. Neutrophils cause cell damage through the production of free radicals, inflammatory mediators, and proteases in ARDS. $PLA_2$ might serve a primary regulatory role in the activation of neutrophils. This present study was performed to elucidate the effect of rutin known as $PLA_2$ inhibitor on ARDS induced by endotoxin. Endotoxin had increased lung myeloperoxidase (MPO) activity, BAL (bronchoalveolar lavage) protein content, numbers of neutrophils in BALF (bronchoalveolar lavage fluid) compared with those of control rat (p<0.001). In addition, histological evidence of lung injury was correlated with neutrophil influx into alveolar space and cerrous perhydroxide granules were found in lining of endothelial cell, alveolar type I, II cells. In contrast, pretreated group of rutin had significantly decreased all of the parameters (p<0.001). These data suggest that inhibition of $PLA_2$ is one step approach that block the process of ARDS. Accordingly, we conclude that rutin can be used as the prophylactic agent for ARDS on the bases of these experimental results.

The Effect of Au Addition on the Hardening Mechanism in Ag-20wt% Pd-20wt% Cu (Ag-20wt% Pd-20wt% Cu 3원합금(元合金) 및 Au첨가합금(添加合金)의 시효경화특성(時效硬化特性))

  • Park, M.H.;Bae, B.J.;Lee, H.S.;Lee, K.D.
    • Journal of Technologic Dentistry
    • /
    • v.19 no.1
    • /
    • pp.21-35
    • /
    • 1997
  • The Ag-Pd-Cu alloys containing a small amount of Au is commonly used for dental purposes, because this alloy is cheaper than Au-base alloys for clinical use. However, the most important characteristic of this alloy is age-hardenability, which is not exhibited by other Ag-base dental alloys. The specimens used were Ag-20Pd-20Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electic furace and centrifugal casting machine in Ar atmoshpere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at $350{\sim}550^{\circ}C$ Age-hardening characteristics of the small Au-containing Ag-pPd-Cu dental alloys were investigated by means of hardness testing, X-ray diffraction and electron microscope observations, electrical resistance, differential scanning calorimetric, emergy dispersed spectra and electron probe microanalysis. Principal results are as follows : Hardening occured in two stages, I. e., stage I in low temperature and stage II in high temperature regions, during continuous aging. The case of hardening in stage I was due to the formation of the Llo type face centered tetragonal PdCu-ordered phase in the grain interior and hardening in stage I was affedted by the Cu concentration. In stage II, decomposition of the $\alpha$ solid solution to a PdCu ordered phase(L1o type) and an Agrich ${\alpha}2$ phase occurred and a discontiunous precipitation occurred at the grain boundary. Form the electron microscope study, it was concluded that the cause of age-hardening in this alloy is the precipitation of the PdCu ordered phase, which has AuCu I type face-centered tetragonal structure. Precipitation procedure was ${\alpha}\to{\alpha}+{\alpha}2+PdCu\to{\alpha}1+{\alpha}2+PdCu$ at Pd/Cu = 1 Ag-Pd-Cu alloy is more effective dental alloy as ageing treatment and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF

A bilayer diffusion barrier of atomic layer deposited (ALD)-Ru/ALD-TaCN for direct plating of Cu

  • Kim, Soo-Hyun;Yim, Sung-Soo;Lee, Do-Joong;Kim, Ki-Su;Kim, Hyun-Mi;Kim, Ki-Bum;Sohn, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.239-240
    • /
    • 2008
  • As semiconductor devices are scaled down for better performance and more functionality, the Cu-based interconnects suffer from the increase of the resistivity of the Cu wires. The resistivity increase, which is attributed to the electron scattering from grain boundaries and interfaces, needs to be addressed in order to further scale down semiconductor devices [1]. The increase in the resistivity of the interconnect can be alleviated by increasing the grain size of electroplating (EP)-Cu or by modifying the Cu surface [1]. Another possible solution is to maximize the portion of the EP-Cu volume in the vias or damascene structures with the conformal diffusion barrier and seed layer by optimizing their deposition processes during Cu interconnect fabrication, which are currently ionized physical vapor deposition (IPVD)-based Ta/TaN bilayer and IPVD-Cu, respectively. The use of in-situ etching, during IPVD of the barrier or the seed layer, has been effective in enlarging the trench volume where the Cu is filled, resulting in improved reliability and performance of the Cu-based interconnect. However, the application of IPVD technology is expected to be limited eventually because of poor sidewall step coverage and the narrow top part of the damascene structures. Recently, Ru has been suggested as a diffusion barrier that is compatible with the direct plating of Cu [2-3]. A single-layer diffusion barrier for the direct plating of Cu is desirable to optimize the resistance of the Cu interconnects because it eliminates the Cu-seed layer. However, previous studies have shown that the Ru by itself is not a suitable diffusion barrier for Cu metallization [4-6]. Thus, the diffusion barrier performance of the Ru film should be improved in order for it to be successfully incorporated as a seed layer/barrier layer for the direct plating of Cu. The improvement of its barrier performance, by modifying the Ru microstructure from columnar to amorphous (by incorporating the N into Ru during PVD), has been previously reported [7]. Another approach for improving the barrier performance of the Ru film is to use Ru as a just seed layer and combine it with superior materials to function as a diffusion barrier against the Cu. A RulTaN bilayer prepared by PVD has recently been suggested as a seed layer/diffusion barrier for Cu. This bilayer was stable between the Cu and Si after annealing at $700^{\circ}C$ for I min [8]. Although these reports dealt with the possible applications of Ru for Cu metallization, cases where the Ru film was prepared by atomic layer deposition (ALD) have not been identified. These are important because of ALD's excellent conformality. In this study, a bilayer diffusion barrier of Ru/TaCN prepared by ALD was investigated. As the addition of the third element into the transition metal nitride disrupts the crystal lattice and leads to the formation of a stable ternary amorphous material, as indicated by Nicolet [9], ALD-TaCN is expected to improve the diffusion barrier performance of the ALD-Ru against Cu. Ru was deposited by a sequential supply of bis(ethylcyclopentadienyl)ruthenium [Ru$(EtCp)_2$] and $NH_3$plasma and TaCN by a sequential supply of $(NEt_2)_3Ta=Nbu^t$ (tert-butylimido-trisdiethylamido-tantalum, TBTDET) and $H_2$ plasma. Sheet resistance measurements, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES) analysis showed that the bilayer diffusion barriers of ALD-Ru (12 nm)/ALD-TaCN (2 nm) and ALD-Ru (4nm)/ALD-TaCN (2 nm) prevented the Cu diffusion up to annealing temperatures of 600 and $550^{\circ}C$ for 30 min, respectively. This is found to be due to the excellent diffusion barrier performance of the ALD-TaCN film against the Cu, due to it having an amorphous structure. A 5-nm-thick ALD-TaCN film was even stable up to annealing at $650^{\circ}C$ between Cu and Si. Transmission electron microscopy (TEM) investigation combined with energy dispersive spectroscopy (EDS) analysis revealed that the ALD-Ru/ALD-TaCN diffusion barrier failed by the Cu diffusion through the bilayer into the Si substrate. This is due to the ALD-TaCN interlayer preventing the interfacial reaction between the Ru and Si.

  • PDF

The Effect of Chemical Composition and Sintering Temperature on The Improvement of Physical Properties of Mn-Zn Ferrites (Mn-Zn ferrite의 성분 및 소결 온도에 따른 물리적 특성의 향상 연구)

  • 고재귀
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.269-274
    • /
    • 1995
  • The basic composition of Mn-Zn ferrite was $Mn_{0.631}Zn_{0.316}Fe_{2.053}O_{4}$(specimen A), $Mn_{0.584}Zn_{0.312}Fe_{2.104}O_{4}$(specimen B) and $Mn_{0.538}Zn_{0.308}Fe_{2.154}O_{4}$(specimen C) with additional 0.1 mol % $CaCo_{3}$ and 0.04 mol % $V_{2}O_{5}$. For high per¬meability and acceleration of grain growth, $CaCo_{3}$ and $V_{2}O_{5}$. was added. The mixture of the law materials was calcinated at $950^{\circ}C$ for 3 hours and then milled. The compacts of toroidal type were sintered at different temperature($1250^{\circ}C$, $1300^{\circ}C$, $1350^{\circ}C$) for 2 hours in $N_2$ atmosphere. The effects of the various raw material composition and sintered temperature on the physical properties of Mn-Zn ferrite have been investigated. They turned out to be spinel structure by X-ray diffraction and the size of grain from SEM was from $18\;\mu\textrm{m}\;to\;23\;\mu\textrm{m}$. As the sintering temperature was increased from $1250^{\circ}C$ to $1350^{\circ}C$, the initial permeability and magnetic induction has increased and the both of Q factor and coercive force has decreased. The coercive force and curie temperature were almost the same at each specimen Their values were about 0.45 Oe and $200^{\circ}C$. The frequency of specimen will used in the range from 200 kHz to 2 MHz. The basic composition of $Mn_{0.584}Zn_{0.312}Fe_{2.104}O_{4}$(specimen B) sintered at $1300^{\circ}C$ shows the best results at magnetic induction (Br & Bm).

  • PDF