• 제목/요약/키워드: Grain Model

검색결과 657건 처리시간 0.02초

A combined stochastic diffusion and mean-field model for grain growth

  • Zheng, Y.G.;Zhang, H.W.;Chen, Z.
    • Interaction and multiscale mechanics
    • /
    • 제1권3호
    • /
    • pp.369-379
    • /
    • 2008
  • A combined stochastic diffusion and mean-field model is developed for a systematic study of the grain growth in a pure single-phase polycrystalline material. A corresponding Fokker-Planck continuity equation is formulated, and the interplay/competition of stochastic and curvature-driven mechanisms is investigated. Finite difference results show that the stochastic diffusion coefficient has a strong effect on the growth of small grains in the early stage in both two-dimensional columnar and three-dimensional grain systems, and the corresponding growth exponents are ~0.33 and ~0.25, respectively. With the increase in grain size, the deterministic curvature-driven mechanism becomes dominant and the growth exponent is close to 0.5. The transition ranges between these two mechanisms are about 2-26 and 2-15 nm with boundary energy of 0.01-1 J $m^{-2}$ in two- and three-dimensional systems, respectively. The grain size distribution of a three-dimensional system changes dramatically with increasing time, while it changes a little in a two-dimensional system. The grain size distribution from the combined model is consistent with experimental data available.

A hardening model considering grain size effect for ion-irradiated polycrystals under nanoindentation

  • Liu, Kai;Long, Xiangyun;Li, Bochuan;Xiao, Xiazi;Jiang, Chao
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2960-2967
    • /
    • 2021
  • In this work, a new hardening model is proposed for the depth-dependent hardness of ion-irradiated polycrystals with obvious grain size effect. Dominant hardening mechanisms are addressed in the model, including the contribution of dislocations, irradiation-induced defects and grain boundaries. Two versions of the hardening model are compared, including the linear and square superposition models. A succinct parameter calibration method is modified to parametrize the models based on experimentally obtained hardness vs. indentation depth curves. It is noticed that both models can well characterize the experimental data of unirradiated polycrystals; whereas, the square superposition model performs better for ion-irradiated materials, therefore, the square superposition model is recommended. In addition, the new model separates the grain size effect from the dislocation hardening contribution, which makes the physical meaning of fitted parameters more rational when compared with existing hardness analysis models.

오스테나이트 결정립 미세화를 위한 후판 압연 패스 스케줄의 설계 (Design of Rolling Path Schedule for Refinement of Austenite Grain)

  • 홍창표;박종진
    • 대한기계학회논문집A
    • /
    • 제25권11호
    • /
    • pp.1844-1853
    • /
    • 2001
  • In the present investigation, it was attempted to design the rolling pass schedule fur a clean steel of 0.1C-1.5Mn-0.25Si with the objective of the austenite grain refinement. As the method of approach, a coupled mathematical modeling technique was proposed which consists of a recrystallization model and a flow stress modes. The validity of the coupled model was examined through comparison with results of continuous and discontinuous compression tests at various temperatures, strains and strain rates. The coupled model was incorporated with the finite element method to set up a systematic design methodology far the rolling path schedule for austenite grain refinement. Two path schedules were obtained and discussed in the paper with regard to rolling path time, average grain size, grain size deviation in thickness, etc.

나노 세라믹 분말의 고온 치밀화와 결정립 성장의 해석 (Analysis for Densification Behavior and Grain Growth of Nanocrystalline Ceramic Powder under High Temperature)

  • 김홍기;김기태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.363-368
    • /
    • 2000
  • Densification, grain growth, and phase transformation of nanocrystalline ceramic powder were investigated under pressureless sintering, sinter forging, and hot pressing. A constitutive model for densification of nanocrystalline ceramic powder was proposed and implemented into a finite element program (ABAQUS). A grain growth model was also proposed by including the effect of applied stress on grain growth when phase transformation occurs. Finite element results by using the proposed models well predicted densification behavior, deformation, and grain growth of nanocrystalline titania powder during pressureless sintering, sinter forging, and hot pressing.

  • PDF

Modelling Strength and Ductility of Nanocrystalline Metallic Materials

  • Kim, Hyoung-Seop
    • 한국분말재료학회지
    • /
    • 제8권3호
    • /
    • pp.168-173
    • /
    • 2001
  • The effect of grain refinement of the strength and ductility of metallic materials is investigated. A model in which a single phase material is considered as an effectively two-phase one is discussed. A distinctive feature of the model is that grain boundaries are treated as a separate phase deforming by a diffusion mechanism. Deformation of the grain interior phase is assumed to be carried by two concurrent mechanism. Deformation of the grain interior phase is assumed to be carried by two concurrent mechanisms: dislocation glide and mass transfer by diffusion. The model was exemplified by simulating uniaxial tensile deformation of Cu down to the nanometer grain size. The results confirm the observed strain hardening behaviour and a trend for reduction of ductility with decreasing grain size at room temperature.

  • PDF

New Density-Independent Model for Measurement of Grain Moisture Content using Microwave Techniques

  • Kim, Jong-Heon;Kim, Ki-Bok;Noh, Sang-Ha
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권4호
    • /
    • pp.72-78
    • /
    • 1997
  • A free space transmission method using standard gain horn antennas in the frequency range from 9.0 to 10.5GHz is applied to determine the dielectric properties of grain such as rough rice ,brown rice and barley. The dielectric constant and loss factor, which depend on the moisture content of the wetted grain are obtained from the measured attenuation and phase shift by vector network analyzer. The moisture content of grain varied from 11 to 25% based on this wetted condition. The measured values of dielectric constants as a function of moisture density are compared with values of those obtained using he predicted model for estimating dielectric constants of grain. The effect of density fluctuation, high is an important parameter governing the dielectric properties of grain, on the dielectric constant and loss factor is presented. A new density-independent model in terms of measured attenuation an moisture density is proposed of reducing the effects of density fluctuation on the moisture content measurement.

  • PDF

광학적 망점확대의 상당산란면적 모델에 관한 연구 (Equivalent Scattering Area Model of Optical Dot Gain)

  • 강상훈
    • 한국인쇄학회지
    • /
    • 제12권1호
    • /
    • pp.43-55
    • /
    • 1994
  • To investigate relations between Grain-shape of plate and Dot-Gain in the lithography, Printing plates were made by Mechanical Grain, Brush Grain and Electrolytic Grain method.Fine multi-grain by electrolytic method of them resulted in less Dot-grain on the paper, more damping water on the none image part of printing plate.

  • PDF

나노결정 재료의 상혼합모델과 유한요소법을 결합한 멀티스케일 모델링 (Multi-Scale Modelling of a Phase Mixture Model and the Finite Element Method for Nanocrystalline Materials)

  • 윤승채;서민홍;김형섭
    • 소성∙가공
    • /
    • 제13권2호
    • /
    • pp.174-179
    • /
    • 2004
  • The effect of grain refinement on the plastic deformation behaviour of nanocrystalline metallic materials is investigated. A phase mixture model in which a single phase material is considered as an effectively two-phase one is discussed. A distinctive feature of the model is that grain boundaries are treated as a separate phase deforming by a diffusion mechanism. For the grain interior phase two concurrent mechanisms are considered: dislocation glide and mass transfer by diffusion. The proposed constitutive model was implemented into a finite element code (DEFORM) using a semicoupled approach. The finite element method was applied to simulating room temperature tensile deformation of Cu down to the nanoscale grain size in order to investigate the pre- and post-necking behaviour.

벼 퇴적층 냉각 시뮬레이션 (Cooling Simulation for Fixed-Bed of Rough Rice)

  • 김동철;김의웅;금동혁
    • Journal of Biosystems Engineering
    • /
    • 제24권1호
    • /
    • pp.31-40
    • /
    • 1999
  • The objective of this study were to develop a cooling simulation model for fixed-bed of rough rice and to analyze the factors affecting cooling time of rough rice. A computer simulation model based on equilibrium conditions between grain and air was developed to predict temperature and moisture content changes during cooling of rough rice. the result of t-test showed that there were no significant differences between predicted and measured temperature changes on significance model agreed well with measured values. This cooling simulation model was applied to analyze the effect of some factors, such as air flow rate, cooling air temperature and humidity, initial grain temperature and moisture content, and bed depth, on cooling time of rough rice. Cooling rate increased with increase of air flow rate and bed depth whereas it decreased with increase of cooling air temperature and humidity and initial grain temperature. Among these factors, the most important factor was air flow rate. Specific air flow rate of 0.35㎥/min㎥ was required for cooling rough rice in 24 hours.

  • PDF

비균일 조직에 따른 불균일 변형 해석을 위한 미시역학적 초소성 모텔 (Micromechanical Superplastic Model for the Analysis of Inhomogeneous Deformation in Heterogeneous Microstructure)

  • 김태원
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.1933-1943
    • /
    • 2001
  • A micromechanical model is presented for superplasticity in which heterogeneous microstructures are coupled with deformation behavior. The effects of initial distributions of grain size, and their evolutions on the mechanical properties can be predicted by the model. Alternative stress rate models such as Jaumann rate and rotation incremental rate have been employed to analyze uniaxial loading and simple shear problems and the appropriate modeling was studied on the basis of hypoelasticity and elasto-viscoplasticity. The model has been implemented into finite element software so that full process simulation can be carried out. Tests have been conducted on Ti-6Al-4V alloy and the microstructural features such as grain size, distributions of grain size, and volume fraction of each phase were examined for the materials that were tested at different strain rates. The experimentally observed stress-strain behavior on a range of initial grain size distributions has been shown to be correctly predicted. In addition, the effect of volume fraction of the phases and concurrent grain growth were analyzed. The dependence of failure strain on strain rate has been explained in terms of the change in mechanism of grain growth that occurs with changing strain rate.