• Title/Summary/Keyword: Grain Deformation Method

Search Result 86, Processing Time 0.03 seconds

Deformation Behavior of 6063 Al Alloy Deformed by Shear-Drawing Method (전단-신선 가공된 6063 알루미늄 합금의 변형거동)

  • Ko, Young Gun;Lee, Byung Uk;Shin, Dong Hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.291-297
    • /
    • 2011
  • This work investigated the microstructure and mechanical properties of 6063 Al alloy fabricated by shear-drawing (SD) technique where shear and drawing strains were combined together within a predetermined die. To find the optimum condition for sound deformation, three different dies having different inner angle and diameter of the exit channel were prepared. After single deformation of the present sample, the sound deformation took place without an abrupt failure of the sample if the inner angle would be greater than $135^{\circ}$ in this study, when the channel diameter of the SD die was reduced from 10 to 9 mm. Microstructural observation showed that the inner angle of $135^{\circ}$ was found to be more effective than that of $150^{\circ}$ in terms of the alignment of each grain to the shear direction imposed by SD method. In addition, the yield strength of the SD-deformed sample was twice higher than that of the initial counterpart while loosing ductility in tension.

Effects of Processing Routes on the Deformation Behavior of an AZ61 Mg Alloy by Half Channel Angular Extrusion(HCAE) using 3D Finite Element Analysis (유한요소해석을 이용한 HCAE 공정의 가공 경로가 AZ61 마그네슘 합금의 변형 특성에 미치는 영향에 대한 연구)

  • Lee, S.I.;Yoon, J.H.;Kim, K.J.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.151-158
    • /
    • 2014
  • Half channel angular extrusion(HCAE) is the integration of equal channel angular extrusion(ECAE), which is a well-known severe plastic deformation(SPD) method, with conventional forward extrusion in order to increase the strain per pass and effectiveness of the grain refinement. In the current study, the effects of processing routes during HCAE(Routes A, B, and C) on the strain distribution of the specimens have been investigated for an AZ61 Mg alloy by using three-dimensional finite element analysis. Comparisons with the results from a multi-pass of ECAE are made.

Prediction of the Behavior of dynamic Recrystallization in Inconel 718 during Hot Forging using Finite Element Method (유한요소법을 이용한 Inconel 718의 열간단조공정시 동적재결정거동 예측)

  • Choi, Min-Shik;Kang, Beom-Soo;Yum, Jong-Taek;Park, Noh-Kwang
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.197-206
    • /
    • 1998
  • This paper presents the prediction of dynamic recrystallization behavior during hot forging of Inconel 718. Another experiment of pancake forging was also carried out to examine the recrystallization ration dynamically recrystallizaed grain size, and grain growth in the forging. In experiments cylindrical billets were forged by two operations with variations of forging temperature, reduction ration of deformation. and preheating process at each forging step. Also the finite element program, developed here for the prediction using the metallurgical models was used for the analysis of to Inconel 718 upsetting and the results were compared with experimental ones.

  • PDF

Evaluation of Residual Stresses in 12%-Cr Steel Friction Stir Welds by the Eigenstrain Reconstruction Method

  • Jun, Tea-Sung;Korsunsky, Alexander M.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.15-22
    • /
    • 2015
  • In the present paper we report the results of a study into Friction Stir Welds (FSWs) made in 13 mm-thick 12%-Cr steel plates. Based on residual strains obtained by diffraction techniques, eigenstrain analysis was performed using the Eigenstrain Reconstruction Method (ERM), which is a novel methodology for the reconstruction of full-field residual strain and stress distributions within engineering components. Significant eigenstrain distributions were found at around Thermo-Mechanically Affected Zone (TMAZ) where the most severe plastic deformation was occurred. Microstructure analysis was used to elucidate this phenomenon showing that the grain structure in TMAZ was bent and not successfully recrystallised, resulting in severe deformation behaviour. The reconstructed residual strain distributions by the ERM agree well with the experimental results. It was found that the approach based on theory of eigenstrain is a powerful basis for reconstructing the full-field residual strain/stress distributions in engineering components and structures.

Carbon Nanotube Reinforced Metal Matrix Nanocomposites via Equal Channel Angular Pressing

  • Quang, Pham;Jeong, Young-Gi;Yoon, Seung-Chae;Hong, Sun-Ig;Hong, Soon-Hyung;Kim, Hyoung-Seop
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.980-981
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of Carbon nanotube (CNT)/metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT/Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature.

  • PDF

Study on the Mechanical Properties of TiAl Crystals Grown by a Floating Zone Method

  • Han, Chang-Suk;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.369-373
    • /
    • 2017
  • Unidirectionally solidified TiAl alloys were prepared by optically-heated floating zone method at growth rates of 10 to 70 mm/h in flowing argon. The microstructures and tensile properties of these crystal bars were found to depend strongly on the growth rate and alloy composition. TiAl alloys with composition of 47 and 50 at.%Al grown under the condition of 10 mm/h showed $Ti_3Al({\alpha}_2)/TiAl({\gamma})$ layer structures similar to single crystals. As the growth rate increased, the alloys with 47 and 50 at.%Al compositions showed columnar-grain structures. However, the alloys fabricated under the condition of 10 mm/h had a layered structure, but the alloy with increased growth rate consisted of ${\gamma}$ single phase grains. The alloy with a 53 at.%Al composition showed a ${\gamma}$ single phase regardless of the growth rate. Room-temperature tensile tests of these alloys revealed that the columnar-grained material consisting of the layered structure showed a tensile ductility of larger than 4 % and relatively high strength. The high strength is caused by stress concentration at the grain boundaries; this enhances the secondary slip or deformation twinning across the layered structure in the vicinity of the grain boundaries, resulting in the appreciable ductility.

Molecular Theory of Plastic Deformation (Ⅲ)$^*$

  • Kim, Jae-Hyun;Ree, Tai-Kyue;Kim, Chang-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.3
    • /
    • pp.96-104
    • /
    • 1981
  • (1) The flow data of f (stress) and ${\dot{s}$ (strain rate) for Fe and Ti alloys were plotted in the form of f vs. -ln ${\dot{s}$ by using the literature values. (2) The plot showed two distinct patterns A and B; Pattern A is a straight line with a negative slope, and Pattern B is a curve of concave upward. (3) According to Kim and Ree's generalized theory of plastic deformation, pattern A & B belong to Case 1 and 2, respectively; in Case 1, only one kind of flow units acts in the deformation, and in Case 2, two kinds flow units act, and stress is expressed by $f={X_1f_1}+{X_2f_2}$where $f_1\;and\;f_2$ are the stresses acting on the flow units of kind 1 and 2, respectively, and $X_1,\;X_2$ are the fractions of the surface area occupied by the two kinds of flow units; $f_j=(1/{\alpha}_j) sinh^{-1}\;{\beta}_j{{\dot{s}}\;(j=1\;or\;2)$, where $1/{\alpha}_j\;and\;{\beta}_j$ are proportional to the shear modulus and relaxation time, respectively. (4) We found that grain-boundary flow units only act in the deformation of Fe and Ti alloys whereas dislocation flow units do not show any appreciable contribution. (5) The deformations of Fe and Ti alloys belong generally to pattern A (Case 1) and B (Case 2), respectively. (6) By applying the equations, f=$(1/{\alpha}_{g1}) sinh^-1({\beta}_{g1}{\dot{s}}$) and $f=(X_{g1}/{\alpha}_{g1})sinh^{-1}({\beta}_{g1}{\dot{s}})+ (X_{g2}/{\alpha}_{g2})\;shih^{-1}({\beta}_{g2}{\dot{s}})$ to the flow data of Fe and Ti alloys, the parametric values of $x_{gj}/{\alpha}_{gj}\;and\;{\beta}_{gs}(j=1\;or\;2)$ were determined, here the subscript g signifies a grain-boundary flow unit. (7) From the values of ($({\beta}_gj)^{-1}$) at different temperatures, the activation enthalpy ${\Delta}H_{gj}^{\neq}$ of deformation due to flow unit gj was determined, ($({\beta}_gj)^{-1}$) being proportional to , the jumping frequency (the rate constant) of flow unit gj. The ${\Delta}H_{gj}\;^{\neq}$ agreed very well with ${\Delta}H_{gj}\;^{\neq}$ (self-diff) of the element j whose diffusion in the sample is a critical step for the deformation as proposed by Kim-Ree's theory (Refer to Tables 3 and 4). (8) The fact, ${\Delta}H_{gj}\;^{\neq}={\Delta}H_{j}\;^{\neq}$ (self-diff), justifies the Kim-Ree theory and their method for determining activation enthalpies for deformation. (9) A linear relation between ${\beta}^{-1}$ and carbon content [C] in hot-rolled steel was observed, i.e., In ${\beta}^{-1}$ = -50.2 [C] - 40.3. This equation explains very well the experimental facts observed with regard to the deformation of hot-rolled steel..

Prediction of Texture Evolution of Aluminum Extrusion Processes using Rigid-Plastic Finite Element Method based on Rate-Independent Crystal Plasticity (강소성 유한 요소 해석에 연계한 Rate-Independent 결정소성학을 이용한 3차원 알루미늄 압출재에서의 변형 집합 조직 예측)

  • Kim K.J.;Yang D.Y.;Yoon J.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.485-488
    • /
    • 2005
  • Most metals are polycrystalline material whose deformation is dominated by the slip system. During the deformation process, orientation of slip systems is rearranged with preferred orientations, leading to deformation-induced crystallographic texture which is called deformation texture. Depending on the texture development, the property of material can be changed. The rate-independent crystal plasticity which is based on the Schmid law as a yield function causes a non-uniqueness in the choice of active slip systems. In this work, to avoid the slip system ambiguity problem, rate-independent crystal plasticity model based on the smooth yield surface with rounded-off corners is adopted. In order to simulate the polycrystalline material under plastic deformation, we employ the Taylor model of polycrystal behavior that all the grains are assumed to be subjected to the macroscopic velocity gradient. Rigid-plastic finite element program based on this rate-independent crystal plasticity is developed to predict the grain-level deformation behavior of FCC metals during metal forming processes. In the finite element calculation, one integration point is considered as a crystalline aggregate which has a number of crystals. Macroscopic behavior of material can be deduced from the behavior of aggregates. As applications, the extrusion processes are simulated and the changes of mechanical properties are predicted.

  • PDF

Variation in Microstructural Homogeneity and Mechanical Properties of Extruded Mg-5Bi Alloy Via Controlling Billet Shape (빌렛 형상 제어를 통한 Mg-5Bi 합금 압출재의 조직 균일도 및 기계적 물성 변화)

  • Jin, S.C.;Cha, J.W.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.344-350
    • /
    • 2022
  • Extruded Mg-Bi binary alloys are known to have an undesirable bimodal grain structure containing a large amount of coarse unrecrystallized grains. Accordingly, to improve the microstructural homogeneity of extruded Mg-Bi alloys, it is necessary to promote the dynamic recrystallization (DRX) behavior during hot extrusion. An effective way to promote DRX is an increase in nucleation sites for DRX through a pre-deformation process before extrusion, such as cold pre-forging and hot pre-compression. However, the application of these pre-deformation processes increases the cost of final extruded Mg products because of an increase in energy consumption and decrease in productivity. Therefore, a low-cost new continuous process with high productivity is required to improve the microstructural homogeneity and mechanical properties of extruded Mg alloys without a drastic increase in the entire process cost. This study proposes a new extrusion method using an extrusion billet with a truncated cone shape (i.e., tapered billet) instead of a conventional extrusion billet with a cylindrical shape. When the hot extrusion of a Mg-5Bi alloy is conducted using the tapered billet, the DRX behavior during extrusion is considerably promoted. The DRX fraction and average grain size of the extruded alloy significantly increase and decrease from 65% to 91% and from 225 ㎛ to 49 ㎛, respectively. Consequently, the extruded Mg-5Bi alloy fabricated using the tapered billet has a finer homogeneous grain structure and higher tensile elongation than the extruded counterpart fabricated using the cylindrical billet.

Consolidation and Mechanical Behavior of Gas Atomized MgZn4.3Y0.7 Alloy Powders using High Pressure Torsion (고압비틀림 공정을 통한 급속응고 MgZn4.3Y0.7 합금 분말의 치밀화 및 기계적 거동)

  • Yoon, Eun-Yoo;Chae, Hong-Jun;Kim, Taek-Soo;Lee, Chong-Soo;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.190-196
    • /
    • 2010
  • In this paper, rapid solidified Mg-4.3Zn-0.7Y (at.%) alloy powders were prepared using an inert gas atomizer, followed by a severe plastic deformation technique of high pressure torsion (HPT) for consolidation of the powders. The gas atomized powders were almost spherical in shape, and grain size was as fine as less than $5\;{\mu}m$ due to rapid solidification. Plastic deformation responses during HPT were simulated using the finite element method, which shows in good agreement with the analytical solutions of a strain expression in torsion. Varying the HPT processing temperature from ambient to 473 K, the behavior of powder consolidation, matrix microstructural evolution and mechanical properties of the compacts was investigated. The gas atomized powders were deformed plastically as well as fully densified, resulting in effective grain size refinements and enhanced microhardness values.