• 제목/요약/키워드: Grain Boundary Crack

검색결과 84건 처리시간 0.022초

입계기공의 확산성장 모델을 이용한 고온기기의 크립균열전파해석(1)-응력장 및 균열전파속도에 미치는 입계기공의 영향- (Analysis of Creep Crack Growth at High-Temperature Components by Diffusive Growth Model of Grain Boundary Cavities (I)-Effect of Grain Boundary Cavitation on Stress Field and Crack Growth Rate-)

  • 전재영
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1177-1185
    • /
    • 1996
  • The crack growth under creep condition is one of the major damage mechanisms which determines remaining life of the component operating at high temperatures. In this paper, the creep crack growth by grain boundary cavitation is studied, which is frequently observed failure mechanism for creep brittle materials. As a result of diffusive growth of creep cavities, it is shown that the crack-tip stress field is modified from the original stress distribution by the amount of singularity attenuation parameter which is function of crack growth rate and material properties. Also, the stress relaxation at crack-tip results in the extension of cavitating area by the load dump effect to meet the macroscopic force equilibrium conditdion.

SUS 316鋼 의 高溫低사이클 피勞擧動 에 미치는 粒界절出物 의 影響 (Effect of grain boundary precipitation on low-cycle fatigue behavior aat elevated temperature of SUS 316 stainless steel)

  • 오세욱;국미무;산전방박;좌등철
    • 대한기계학회논문집
    • /
    • 제4권4호
    • /
    • pp.152-159
    • /
    • 1980
  • The temperature and the grain boundary precipitation have the great influence on the low-cycle fatigue behavior of austenite stainless steel at elevated temperature. For the purpose of investigating the mechanism concerning the change of fatigue micro crack mode in SUS 316 under various conditions low-cycle fatigue test was carried out at the elevated temperature 600.deg.C, plastic strain range 2% and constant strain rate .5c.p.m. A special attention is given to the observation of intergranular crack initiation. The results obtained are summarized as follows. The low-cycle fatigue behavior of SUS 316 at 600.deg.C is affected by transition of crack initiation mode from intergranular to transgranular. The transition is due to the aging effect, which is caused by grain boundary precipitations of Cr$\_$23/C$\_$6/. Since the intergranular crack initiation is brought about by the grain boundary sliding, the transgranular crack initiates in case that the strengthening of grain boundary due to the precipitation of Cr$\_$23/C$\_$6/ carbides takes place ahead of the intergranular crack initiation.

PWR 1차측 환경에서 Alloy 600 응력부식균열 선단 부근에서의 산화 거동 (Oxidation Behavior around the Stress Corrosion Crack Tips of Alloy 600 under PWR Primary Water Environment)

  • 임연수;김홍표;황성식
    • Corrosion Science and Technology
    • /
    • 제11권4호
    • /
    • pp.141-150
    • /
    • 2012
  • Stress corrosion cracks in Alloy 600 compact tension specimens tested at $325^{\circ}C$ in a simulated primary water environment of pressurized water reactor were analyzed by analytical transmission electron microscopy and secondary ion mass spectroscopy (SIMS). From a fine-probe chemical analysis, oxygen was found on the grain boundary just ahead of the crack tip, and chromium oxides were precipitated on the crack tip and the grain boundary attacked by the oxygen diffusion, leaving a Cr/Fe depletion (or Ni enrichment) zone. The oxide layer inside the crack was revealed to consist of a double (inner and outer) layer. Chromium oxides existed in the inner layer, with NiO and (Ni,Cr) spinels in the outer layer. From the nano-SIMS analysis, oxygen was detected at the locations of intergranular chromium carbides ahead of the crack tip, which means that oxygen diffused into the grain boundary and oxidized the surfaces of the chromium carbides. The intergranular chromium carbide blunted the crack tip, thereby suppressing the crack propagation.

Effect of Heat Treatment on Fatigue Crack Growth Rate of Inconel 690

  • Kim, Young-Ho;Lee, Byong-Whi
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(2)
    • /
    • pp.123-128
    • /
    • 1997
  • The effects of heat treatment on fatigue crack growth rates (FCGRs) of Inconel 690 have been investigated in terms of carbide morphology and grain size. Cycling tests in air at room temperature have shown that FCGR in low stress intensity factor range (ΔK) region can be effectively reduced by increasing the grain boundary carbide precipitate size and grain size. Decrease in FCGR is attributed to the crack tip blunting at the precipitates of grain boundary chromium carbides.

  • PDF

Mechanism of Environmentally-Induced Stress Corrosion Cracking of Zr-Alloys

  • Park, Sang Yoon;Kim, Jun Hwan;Choi, Byung Kwon;Jeong, Yong Hwan
    • Corrosion Science and Technology
    • /
    • 제6권4호
    • /
    • pp.170-176
    • /
    • 2007
  • Iodine-induced stress corrosion cracking (ISCC) properties and the associated ISCC process of Zircaloy-4 and an Nb-containing advanced nuclear fuel cladding were evaluated. An internal pressurization test with a pre-cracked specimen was performed with a stress-relieved (SR) or recrystallized (RX) microstructure at $350^{\circ}C$, in an iodine environment. The results showed that the $K_{ISCC}$ of the SR and RX Zircaloy-4 claddings were 3.3 and 4.8MPa\;m^{0.5}, respectively. And the crack propagation rate of the RX Zircaloy-4 was 10 times lower than that of the SR one. The chemical effect of iodine on the crack propagation rate was very high, which was increased $10^4$ times by iodine addition. Main factor affecting on the micro-crack nucleation was a pitting formation and its agglomeration along the grain boundary. However, this pitting formation on the grain-boundary was suppressed in the case of an Nb addition, which resulted in an increase of the ISCC resistance when compared to Zircaloy-4. Crack initiation and propagation mechanisms of fuel claddings were proposed by a grain boundary pitting model and a pitting assisted slip cleavage model and they showed reasonable results.

고강도 용착금속의 미세조직이 저온균열에 미치는 영향 (The Effects of Microstructure on Cold Crack in High-Strength Weld Metals)

  • 이명진;강남현
    • Journal of Welding and Joining
    • /
    • 제32권1호
    • /
    • pp.22-27
    • /
    • 2014
  • In the past, cold crack was commonly observed in the HAZ(heat affected zone) of high-strength steels. Applying to TMCP(thermo-mechanical controlled process) and HSLA(high strength low alloy) steels, cold crack tends to increase the occurrence in the weld metal. It is generally understood that cold crack occurs when the following factors are present simultaneously : diffusible hydrogen in the weld metal, a susceptible microstructure and residual stress. In particular, many studies investigated the microstructural effect on the cold crack in HAZ and the cold crack in weld metals starts to receive the special attendance in modern times. The purpose of the study is to review the effect of weld microstructures (grain boundary ferrite, Widm$\ddot{a}$nstatten ferrite, acicular ferrite, bainite and martensite) on cold crack in the weld metals. Among various microstructures of weld metals, acicular ferrite produced the greatest resistance to the cold crack due to the fine interlocking nature and high-angle grain boundary of the microstructure.

저탄소강재(SM25C)의 피로크랙 전파거동에 미치는 결정립 크기의 영향 (The Influence of Grain Size on the Fatigue Crack Propagation Behavior in the Low Carbon Steel (SM26C))

  • 김건호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.76-82
    • /
    • 2002
  • In this study, the rotary bending fatigue test was carried out with low carbon steel(SM25C). The specimens were heat-treated in order to change the grain size, and investigated items are fatigue limit, small crack initiation, fatigue crack propagation behavior and possibility of fatigue life prediction according to the different grain size. The summarized result are as follows ; Fatigue limit of the smooth specimen was dependent upon the grain size. The fatigue crack initiation of the small grain size specimen was delayed more than that of the large grain size specimen. And the small cracks of small grain size specimen were distributed in the narrow region of the main crack circumference contrary to the large grain size specimen. The main crack was grown along the grain boundary having co-alliance with small cracks. The experiment material has quantitatively disclosed the possibility of fatigue life prediction because the fatigue crack propagation behavior is dependent upon the grain size.

온도 변화에 지배되는 LLCC Solder접합부에서 균열이 일어난 계면에 대한 불순물 편석 (IMPURITY SEGREGATION ON CRACKED GRAIN BOUNDARIES IN LLCC SOLDER JOINTS DURING THERMAL CYCLING)

  • 이성민
    • 한국재료학회지
    • /
    • 제4권3호
    • /
    • pp.329-333
    • /
    • 1994
  • 1시간 주기로 -$35^{\circ}C$에서 +$125^{\circ}C$까지의 온도 변화에 지배되는 Leadless Ceranic Chip Carriers(LLCC'S)의 Solder접합부에서 균열이 계면을 따라 일어났다. 이런 균열이 계면을 취약하게 하는 어떤 불순물에 의한 것이 아닌지를 Scanning Auger Microprobe(SAM)을 이용해 조사했다. 그 결과 계면을 따라 일어나는 균열이 계면의 산화에 의해 일어날 수 있다는 것이 발견되었고, 그에 따라 산화에 취약해진 계면을 따라 일어나는 이런 종류의 피로 파괴현상에 대한 모델을 제시했다.

  • PDF

초음파 비파괴 검사를 이용한 AISI 304 스테인리스강의 크리프-피로 손상의 평가 (Evaluation of Creep-Fatigue Damage in 304 Stainless Steel using Ultrasonic Non-Destructive Test)

  • 이성식;오용준;남수우
    • 대한금속재료학회지
    • /
    • 제49권12호
    • /
    • pp.924-929
    • /
    • 2011
  • It is well known that grain boundary cavitation is the main failure mechanism in austenitic stainless steel under tensile hold creep-fatigue interaction conditions. The cavities are nucleated at the grain boundary during cyclic loading and grow to become grain boundary cracks. The attenuation of ultrasound depends on scattering and absorption in polycrystalline materials. Scattering occurs when a propagation wave encounters microstructural discontinuities, such as internal voids or cavities. Since the density of the creep-fatigue cavities increases with the fatigue cycles, the attenuation of ultrasound will also be increased with the fatigue cycles and this attenuation can be detected nondestructively. In this study, it is found that individual grain boundary cavities are formed and grow up to about 100 cycles and then, these cavities coalesce to become cracks. The measured ultrasonic attenuation increased with the cycles up to cycle 100, where it reached a maximum value and then decreased with further cycles. These experimental measurements strongly indicate that the open pores of cavities contribute to the attenuation of ultrasonic waves. However, when the cavities develop, at the grain boundary cracks whose crack surfaces are in contact with each other, there is no longer any open space and the ultrasonic wave may propagate across the cracks. Therefore, the attenuation of ultrasonic waves will be decreased. This phenomenon of maximum attenuation is very important to judge the stage of grain boundary crack development, which is the indication of the dangerous stage of the structures.

Effects of Microstructure on the Fretting Wear of Inconel 690 Steam Generator Tube

  • Hong, Jin-Ki;Kim, In-Sup;Park, Chi-Yong;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • 제34권2호
    • /
    • pp.132-141
    • /
    • 2002
  • The effects of microstructure on fretting wear were investigated in Inconel 690 tube. The microstructure observation indicated that the solution annealing temperature and time affected the grain size of the Inconel 690 tubes. The carbide morphology, along grain boundaries, was mainly affected by thermal treatment time and temperature. The wear test results showed that specimens with larger grain size and with coarse carbides along grain boundaries had better wear resistance. Cracks were found in specimens with carbides along the grain boundary, while few cracks were found in carbide free specimens. It seemed that the carbides on grain boundary assisted crack formation and propagation in carbide containing specimens. On the other hand, the micro-hardness of specimen did not have a major role in fretting wear. It could be inferred from the SEM images of worn surfaces that the main wear mechanism of carbide containing specimen was delamination, while that of carbide free specimen was abrasion.