• Title/Summary/Keyword: Graft Polymerization

Search Result 177, Processing Time 0.025 seconds

Preparation of Acrylic Acid Grafted Polypropylene by Electron Beam Irradiation and Heavy Metal Ion Adsorption Property (전자선 조사를 이용한 아크릴산이 그라프트된 폴리프로필렌의 제조 및 중금속 이온 흡착 특성)

  • Cheon, Ja young;Jeun, Joon-pyo
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.335-341
    • /
    • 2019
  • In this study, an acrylic acid (AAc) was grafted on a polypropylene (PP) nonwoven fabric using electron beam irradiation. Electron beam grafting was carried out under various conditions to produce AAc grafted PP (PP-g-AAc) nonwoven fabric having a grafting yield of about 50% at radiation dose of 100 kGy and a monomer concentration of 60%. The physical and chemical properties of PP-g-AAc nonwoven fabric were evaluated by SEM, ATR-FTIR, thermal analysis and tensile strength. The morphology of PP and PP-g-AAc nonwoven fabric confirmed by SEM showed no significant change, and it was judged that AAc was introduced into PP nonwoven fabric from ATR-FTIR. PP-g-AAc nonwoven fabric showed an increase in tensile strength and a decrease in tensile strain compared to PP nonwoven fabric. However, since change of value is not significant, it is considered that there is no significant influence on the physical characterization. Adsorption experiments of PP-g-AAc nonwoven fabric on various ions showed selective adsorption behavior for lead ion. In conclusion, the electron beam radiation-induced PP-g-AAc nonwoven fabric is expected to be applied as an effective adsorbent for the adsorption of lead ions.

Hydrophilic Modification of Polypropylene Microfiltration Membrane by Radiation-Induced Graft Polymerization and Water Permeability (방사선 조사 그라프트중합에 의한 폴리프로필렌 정밀여과막의 친수화 및 물 투과특성)

  • Park, Jae-Hyung;Lee, Kune-Woo;Hwang, Taek-Sung;Lee, Jae-Won;Oh, Won-Jin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.954-959
    • /
    • 1999
  • Radiation-induced grafting of 2-hydroxyethyl methacrylate(HEMA), acrylic acid(AAc) and methacrylic acid(MAAc) onto polypropylene microfiltration membrane has been studied. The effect of grafting conditions such as solvent composition(MeOH and $H_2O$) and monomer concentration on the grafting yield in investigated. The highest degree of grafting is obtained at a solvent composition of 25% $H_2O$:75% MeOH for HEMA, pure water for AAc and 50% $H_2O$:50% MeOH for MAAc. Modification of the PP membranes with hydrophilic monomers is shown to cause an increase in the water permeation flux of the membranes. It is found that HEMA is the best monomer to increase the water permeation flux and the highest water permeation flux is obtained at 99% degree of grafting. The water permeation flux of AAc-grafted PP membrane and MAAc-grafted PP membrane is very sensitive to environmental pH and $Cu^{2+}$ ion, but the water permeation flux of HEMA-grafted PP membrane scarcely depends on pH and $Cu^{2+}$ ion.

  • PDF

A Study on Synthesis and Hydrolysis of the Maleated Polyethylene Wax (무수말레인산으로 그라프트된 폴리에틸렌 왁스의 중합과 가수분해에 대한 연구)

  • Yu, Si-Won;Choi, Joong-So;Na, Jae-Sik
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.393-400
    • /
    • 2013
  • In this study, Polyethylene wax, which was produced in manufacturing process of high density polyethylene was grafted with maleic anhydride (MAH). The influences of reaction parameters on the graft polymerization as well as the effect of hydrolysis of the anhydride functions were investigated. The results show that the grafting degree increased and conversion of maleic anhydride decreased with an increase in MAH monomer content. This means the highest grafting efficiency for the reaction can be met when MAH monomer content is about 15 wt%. DCP (dicumyl peroxide) and DTBP (di-tert-butyl peroxide) have been used as the initiator and the highest yield of grafting was obtained when the initiator content is about 0.5 wt%. However, It can be seen that the gel content values of this polyethylene wax grafted MAH were below 2%. It was also observed that the grafting degree increased with an increase in reaction temperature and the maximum value was reached 2 hours later. Although MAH functions grafted onto polyethylene wax were mainly in the carboxylic acid forms, some anhydride form of MAH appeared in over 5% of grafting degree. As a result of hydrolysis reaction, it was observed that the conversion of anhydride group into carboxylic acid group was reached up to 10%.

Adsorption Properties for Heavy Metals Using Hybrid Son Exchange Fibers with Sulfonated PONF-g-Styrene by Radiation Polymerization and Cation Exchange Resin (방사선 중합 설폰화 PONF-g-스티렌과 양이온교환수지 복합 이온교환섬유의 중금속 흡착 특성)

  • Baek, Ki-Wan;Cho, In-Hee;Nho, Young-Chang;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.525-531
    • /
    • 2006
  • In this study, Sulfonated PONF-g-styrene ion exchange fibers were synthesized by radiation induced graft copolymerization. And also, hybride ion exchange fibers, which was combined sulfonated PONF-g-styrene fibers and cationic ion exchange resin, were fabricated by hot melt adhesion method and then their adsorption properties were investigated. ion exchange capacity and water content of hybrid ion exchange fibers increased as compared with those of bead and ion exchange fiber. Their maximum values were 4.76 meq/g and 23.5%, respectively. Adsorption breakthrough time for mercury of hybrid ion exchange fiber was slower than those of bead resin and fibrous ion exchanger. It's value was 130 minutes. Their breakthrough time become short as increasing of pH, and concentration. The initial breakthrough time was observed before and after 10 minutes as increasing of concentration. The adsorption of hybrid ion exchange fibers for $Hg^{2+}\;Pb^{2+},\;Cd^{2+}$ among heavy metals in the mixed solution was observed before 20 min. And also, The adsorption for $Hg^{2+}$ among the heavy metals by hybride ion exchange fibers was observed.

Cross-Linked PGMA-co-PMMA/DAAB Membranes for Propylene/Nitrogen Separation (프로필렌/질소 분리를 위한 가교 구조의 PGMA-co-PMMA/DAAB 분리막)

  • Kim, Na Un;Park, Byeong Ju;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.252-259
    • /
    • 2020
  • Olefins are industrially important materials used for the synthesis of various petrochemicals. During the polymerization process, unreacted olefin monomers are discharged together with a large amount of nitrogen. For economic benefits, these olefin gases should be efficiently separated from nitrogen. In this study, a poly(glycidyl methacrylate-co-methyl methacrylate) (PGM) comb-like copolymer was synthesized and 4,4'-diaminoazobenzene (DAAB) was introduced to the copolymer to prepare a cross-linked membrane for C3H6/N2 separation. PGM and DAAB were readily reacted at room temperature through an epoxide-amine reaction without additional thermal treatment. PGM-based membrane, which is a glassy polymer, showed a faster permeation of N2 compared to C3H6. The pristine PGM membrane exhibited the N2 permeability of 0.12 barrer and the high N2/C3H6 selectivity of 32.4. As DAAB was introduced as a cross-linker, the thermal stability of the membrane was significantly improved, which was confirmed by TGA result. The N2/C3H6 selectivity was decreased at 1 wt% of DAAB content, but the N2 permeability increased by approximately 4.7 times. We analyzed N2/C3H6 gas separation properties through a glassy polymer-based membrane, which has not been widely studied. Also, we proposed that thermal stability of the membrane can be greatly improved by the cross-linking method.

Synthesis of Sulfonated PET-g-GMA Fine Ion-exchange Fibers for Water Treatment by Photopolymerization and Their Adsorption Properties for Metal Ions (광중합법을 이용한 수처리용 설폰산형 PET-g-GMA 극세 이온 교환 섬유의 합성 및 금속 이온 흡착 특성)

  • Kwak Noh-Seok;Hwang Taek-Sung;Kim Sun-Mi;Yang Yun-Kyu;Kang Kyung-Seok
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.397-403
    • /
    • 2004
  • The sulfonated PET-g-GMA ion-exchange fine fibers were synthesized by UV radiation-induced graft copolymerization using a photoinitiator, and their chemical structure and adsorption properties were investigated. The optimum values for synthetic conditions - UV intensity, reaction time, and reaction temperature were 450 W, 60 min, and $40^{\circ}C$, respectively. Maximum values of the degree of sulfonation and ion exchange capacity were 8.12 mmol/g and 3.25 meq/g, respectively. Tensile strength of sulfonated PET-g-GMA fine ion exchange fibers was lower than that of PET trunk polymer as the grafting reaction rates increased. It was shown that as for the adsorption rate of $Ca^{2+}$ and $Mg^{2+}$ by the sulfonated PET-g-GMA fine ion exchange fibers, magnesium ion is slower than calcium ion in the solution. However, in the mixture of the calcium and magnesium ions, the adsorption rate of calcium ion was much slower than that of magnesium ion.

Synthesis and Characterization of Poly(ethylene glycol) Grafted Polysuccinimide (폴리(에틸렌 글리콜)이 결합된 Polysuccinimide의 합성과 특성)

  • Lim, Nak-Hyun;Lee, Ha-Young;Kim, Moon-Suk;Khang, Gil-Son;Lee, Hai-Bang;Cho, Sun-Hang
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.36-40
    • /
    • 2005
  • Poly(amino acid) derivatives have been widely investigated as a drug carrier in drug delivery system. Particularly,polysuccinimide (PSI) is one of the most promising drug carriers since it possesses suitable physicochemical characteristics for development of macromolecular prodrugs, due to biocompatibility and biodegradability. In this study, we deal with the synthesis of polyaspartamide having various functional groups such as methoxy-poly(ethylene glycol) (MPEG) via ring closing of PSI. PSI was synthesized by polyonensation polymerization of spartic acid. The variety of average molecular weight was confirmed with reacion time and catalyst content to observe the optimum condition of synthesis. MPEG, hydrophilic chain, was bonded to fabricate polymeric micell composed of hydrophilic and hydrophobic polymer. All materials were characterized by 1H-NMR, FT-IR and GPC. In addition, the formation of nanoparticle micelle as drug carrier were also examined. Micelle size was measured by ELS and AFM. The functionalized polysparamide formed nanoparticle micelle whose size ranged from 90 to 130 nm. In conclusion, we prepared polyaspartamide functionalized with PEG examined the possibility as drug carriers.