• Title/Summary/Keyword: Gradients

Search Result 1,176, Processing Time 0.031 seconds

A Study on the Improvement of Membrane Separation and Optimal Coagulation by Using Effluent of Sewage Treatment Plant in Busan

  • Jung, Jin-Hee;Choi, Young-Ik;Han, Young-Rip
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1353-1361
    • /
    • 2013
  • The objectives of this paper are the characterization of the pretreatment of wastewater by microfiltration (MF) membranes for river maintenance and water recycling. This is done by investigation of the proper coagulation conditions, such as the types and doses of coagulants, mixing conditions (velocity gradients and mixing periods), pH, etc., using jar tests. The effluent water from a pore control fiber (PCF) filter located after the secondary clarifier at Kang-byeon Sewage Treatment Plant (K-STP) was used in these experiments. Two established coagulants, aluminum sulfate (Alum) and poly aluminum chloride (PAC), which are commonly used in sewage treatment plants to treat drinking water, were used in this research. The results indicate that the optimal coagulation velocity gradients (G) and agitation period (T) for both Alum and PAC were 200-250 $s^{-1}$ and 5 min respectively, but the coagulation efficiencies for both Alum and PAC were lower at low values of G and T. For a 60 min filtration period on the MF, the flux efficiencies ($J/J_0$ (%)) at the K-STP effluent that were coagulated by PAC and Alum were 92.9 % and 79.9 %, respectively, under the same coagulation conditions. It is concluded that an enhanced membrane process is possible by effective filtration of effluent at the K-STP using the coagulation-membrane separation process.

A study of thermophoretic particle deposition in a particle laden stagnation flow including the effect of radiative heat transfer (정체점 입자유동에서 복사열전달을 고려한 열영동 입자부착 연구)

  • Jeong, Chang-Hun;Lee, Gong-Hun;Choe, Man-Su;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1624-1638
    • /
    • 1996
  • A study of thermophoretic particle deposition has been carried out for a particle laden stagnation flow considering the effect of radiative heat transfer. Energy, concentration and radiative transfer equations are all coupled and have been solved iteratively assuming that absorption and scattering coefficients were proportional to the local concentration of particles. Radiative heat transfer was shown to strongly affect the profiles of temperature and particle concentration. e. g., radiation increases the thickness of thermal boundary layer and wall temperature gradients significantly. As the wall temperature gradients increase, the particle concentration at the wall decreases due to thermophoretic particle transport. The deposition rate that is thermophoretic velocity times particle concentration at the wall decreases as the effects of radiation increases. The effects of optical thickness, conduction to radiation parameter and wall emissivity have been determined. The effects of anisotropic scattering are shown as insignificant.

Gradient Optimized Gradient-Echo Gradient Moment Nulling Sequences for Flow Compensation of Brain Images

  • Jahng, Geon-Ho;Stephen Pickup
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.20-26
    • /
    • 2000
  • Gradient moment nulling techniques require the introduction of an additional gradient on each axis for each order of motion correction to be applied. The additional gradients introduce new constraints on the sequence design and increase the demands on the gradient system. The purpose of this paper is to demonstrate techniques for optimization of gradient echo gradient moment nulling sequences within the constraints of the gradient hardware. Flow compensated pulse sequences were designed and implemented on a clinical magnetic resonance imaging system. The design of the gradient moment nulling sequences requires the solution of a linear system of equations. A Mathematica package was developed that interactively solves the gradient moment nulling problem. The package allows the physicist to specify the desired order of motion compensation and the duration of the gradients in the sequence with different gradient envelopes. The gradient echo sequences with first, second, and third order motion compensation were implemented with minimum echo time. The sequences were optimized to take full advantage of the capabilities of the gradient hardware. The sequences were used to generate images of phantoms and human brains. The optimized sequences were found to have better motion compensation than comparable standard sequences.

  • PDF

Parameteric Analysis for Up-lifting force on Slab track of Bridge (교량상 slab궤도의 상향력 민감도분석)

  • Choi, Sung-Ki;Park, Dae-Geun;Han, Sang-Yoon;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1188-1195
    • /
    • 2007
  • The vertical forces in rail fasteners at areas of bridge transitions near the embankment and on the pier will occur due to different deformations of adjoining bridges caused by the trainloads, the settlement of supports, and the temperature gradients. The up-lifting forces is not large problem in the blast track because the elasticity of blast and rail pad buffs up-lifting effect. But, it is likely to be difficult to ensure the serviceability of the railway and the safety of the fastener in the end in that concrete slab track consist of rail, fastener, and track in a single body, delivering directly the up-lifting force to the fastener if the deck is bended because of various load cases, such as the end rotation of the overhang due to the vertical load, the bending of pier due to acceleration/braking force and temperature deviation, the settlement of embankment and pier, the temperature deviation of up-down deck and front-back pier, and the rail deformation due to wheel loads. The analysis of the rail fastener is made to verify the superposed tension forces in the rail fastener due to various load cases, temperature gradients and settlement of supports. The potential critical fasteners with the highest uplift forces are the fastener adjacent to the civil joint. The main influence factors are the geometry of the bridge such as, the beneath length of overhang, relative position of bridge bearing and fastener, deflection of bridge and the vertical spring stiffness of the fastener.

  • PDF

Thermo-Mechanical Interaction of Flip Chip Package Constituents (플립칩 패키지 구성 요소의 열-기계적 특성 평가)

  • 박주혁;정재동
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.183-190
    • /
    • 2003
  • Major device failures such as die cracking, interfacial delamination and warpage in flip chip packages are due to excessive heat and thermal gradients- There have been significant researches toward understanding the thermal performance of electronic packages, but the majority of these studies do not take into account the combined effects of thermo-mechanical interactions of the different package constituents. This paper investigates the thermo-mechanical performance of flip chip package constituents based on the finite element method with thermo-mechanically coupled elements. Delaminations with different lengths between the silicon die and underfill resin interfaces were introduced to simulate the defects induced during the assembly processes. The temperature gradient fields and the corresponding stress distributions were analyzed and the results were compared with isothermal case. Parametric studies have been conducted with varying thermal conductivities of the package components, substrate board configurations. Compared with the uniform temperature distribution model, the model considering the temperature gradients provided more accurate stress profiles in the solder interconnections and underfill fillet. The packages with prescribed delaminations resulted in significant changes in stress in the solder. From the parametric study, the coefficients of thermal expansion and the package configurations played significant roles in determining the stress level over the entire package, although they showed little influence on stresses profile within the individual components. These observations have been implemented to the multi-board layer chip scale packages (CSP), and its results are discussed.

Merging Features and Optical-NIR Color Gradient of Early-type Galaxies

  • Kim, Du-Ho;Im, Myeong-Sin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.41.1-41.1
    • /
    • 2010
  • It has been suggested that merging plays an important role in the formation and the evolution of early-type galaxies. Optical-NIR color gradients of early-type galaxies in high density environments are found to be less steep than those in low density environment, hinting frequent merger activities in early-type galaxies in high density environment. In order to confirm if the flat color gradient is the result of dry merger, we decided to look deeply to find merging features and get their relation with color gradient. We selected samples which show extreme values of optical-NIR color gradients based on the data of previous study, and observed them at Maidanak observatory 1.5m telescope with long exposure. After masking out overlaid sources, our analysis reveals that these galaxies do not have extreme color gradient values. High degree sky flat technique was used during observation to aid discovery of faint, extended features. However, flatness of detector (SNUCAM) was good enough, so we could not see any marked improvement in image quality compared to those using normal sky flats. Additionally we noticed a feature that looks like merging tidal tail in the CFHT archival image, but this does not show up on the image we obtained. This demonstrates that flatness and correct sky estimation is very important when we look for faint merging features. In future we plan to enlarge the number of the sample.

  • PDF

The formation mechanism of grown-in defects in CZ silicon crystals based on thermal gradients measured by thermocouples near growth interfaces

  • Abe, Takao
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.402-416
    • /
    • 1999
  • The thermal distributions near the growth interface of 150nm CZ crystals were measured by three thermocouples installed at the center, middle (half radius) and edge (10nm from surface) of the crystals. The results show that larger growth rates produced smaller thermal gradients. This contradicts the widely used heat flux balance equation. Using this fact, it is confirmed in CZ crystals that the type of point defects created is determined by the value of the thermal gradient(G) near the interface during growth, as already reported for FZ crystals. Although depending on the growth systems the effective length of the thermal gradient for defect generation are varied, we defined the effective length as 10n,\m from th interface in this experiment. If the G is roughly smaller than 20C/cm, vacancy rich CZ crystals are produced. If G is larger than 25C/cm, the species of point defects changes dramatically from vacancies to interstitials. The experimental results after detaching FZ and CZ crystals from the melt show that growth interfaces are filled with vacancies. We propose that large G produces shrunk lattice spacing and in order to relax such lattice excess interstitials are necessary. Such interstitials recombine with vacancies which were generated at the growth interface, nest occupy interstitial sites and residuals aggregate themselves to make stacking faults and dislocation loops during cooling. The shape of the growth interface is also determined by te distributions of G across the interface. That is, the small G and the large G in the center induce concave and convex interfaces to the melts, respectively.

  • PDF

Analysis of Interaction of Jet-like Current and Wave using Numerical Simulation (수치모의를 통한 유사제트-파랑의 상호작용 해석)

  • Choi, Jun-Woo;Bae, Jae-Seok;Roh, Min;Yoon, Sun-Bum
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.675-678
    • /
    • 2008
  • The effect of wave and current interactions on jet-like current flowing against waves was investigated based on numerical simulations. The numerical simulations are conducted by a combined model system of REF/DIF(a wave model) plus SHORECIRC(a current model) and a Boussinesq equation model, FUNWAVE. In the simulations, regular and irregular waves refracted due to the jet-like opposing current were focused along the core region of current, and the jet-like current was earlier spreaded when the waves had larger wave heights. The numerical results show that the rapid change of wave height distribution in transverse direction near current inlet plays a significant role to spread the jet-like current. In other words, the gradients of radiation stress forcing in transverse direction have a more significant effect on the jet-like current than its relatively small gradients forcing in flowing direction, which tend to accelerate the current, do. In conclusion, it is indispensible to take into account the interaction effect of wave transformation and current characteristics when waves meet the opposing jet-like current such as river mouth.

  • PDF

Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory

  • Hadi, Amin;Nejad, Mohammad Zamani;Rastgoo, Abbas;Hosseini, Mohammad
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.663-672
    • /
    • 2018
  • This paper contains a consistent couple-stress theory to capture size effects in Euler-Bernoulli nano-beams made of three-directional functionally graded materials (TDFGMs). These models can degenerate into the classical models if the material length scale parameter is taken to be zero. In this theory, the couple-stress tensor is skew-symmetric and energy conjugate to the skew-symmetric part of the rotation gradients as the curvature tensor. The material properties except Poisson's ratio are assumed to be graded in all three axial, thickness and width directions, which it can vary according to an arbitrary function. The governing equations are obtained using the concept of minimum potential energy. Generalized differential quadrature method (GDQM) is used to solve the governing equations for various boundary conditions to obtain the natural frequencies of TDFG nano-beam. At the end, some numerical results are performed to investigate some effective parameter on buckling load. In this theory the couple-stress tensor is skew-symmetric and energy conjugate to the skew-symmetric part of the rotation gradients as the curvature tensor.

Multi-objects detection using HOG and effective individual object tracking (HOG를 이용한 다중객체 검출과 효과적인 개별객체 추적)

  • Choi, Min;Lee, Kyu-won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.894-897
    • /
    • 2012
  • We propose a effective method using the HOG (Histogram of Oriented Gradients) feature vector to track individual objects in an environment which multiple objects are moving. The proposed algorithm consists of pre-processing, object detection and object tracking. We experimented with six videos which have various trajectories and the movement. When occlusion between objects was occurred, we identified individual object by using center and predicted coordinates of moving objects. The algorithm shows 85.45% of tracking rate in the videos we experimented. We expect the proposed system is utilized in security systems which require the alalysis of the position and motion pattern of objects.

  • PDF