• Title/Summary/Keyword: Gradients

Search Result 1,176, Processing Time 0.031 seconds

Effects of Micro-topography on Vegetation Pattern in Dunchon-dong Wetland (둔촌동 습지에서 미지형이 식물 군락 구성에 미치는 영향)

  • Nam, Jong Min;Jeon, Seung-Hye;Choi, Ho;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.353-362
    • /
    • 2014
  • The purpose of this study is to investigate the effect of micro-topography to vegetation pattern in Dunchon-dong wetland. To characterize the effect of micro-topography, changes in water level and vegetation pattern were monitored from 2007 to 2008. Depending on the relative elevation, the study site was divided into 4 sectors. The relative areas of sectors in ascending order were 11%, 10%, 18% and 24%, respectively. During investigation period, average water pH was 6.10 (${\pm}0.13$), electron conductivity was $51.5({\pm}6.0){\mu}s/cm$, $PO_4$-P, $NO_3$-N and $NH_4$-N concentration were $0.04({\pm}0.02)mg/L$, $0.14({\pm}0.07)mg/L$, and lower than 0.01mg/L, respectively. Water level was very changeable in low-water season because the area of lowest sector was small. This characteristic increased the effect of difference of accumulated precipitation from March to April in 2007 and 2008 to plant community composition in lower sectors. Different plant guilds dominated respective sectors and annual plants were major dominant species in the study site. This study suggested that the elevation gradients are necessary to create the habitats for various plant guilds in wetland.

Measurements of Streambed Hydraulic Conductivity Using Drive-point Piezometers and Seepage Meters in the Upper Reaches of Anseong Stream (관입형 피조미터와 시피지미터를 이용한 안성천 상류구간 하상 수리전도도 측정)

  • Lee, Jeongwoo;Chun, Seon Geum;Yi, Myeong Jae;Kim, Nam Won;Chung, Il-Moon;Lee, Min Ho
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.413-420
    • /
    • 2015
  • Streambed hydraulic conductivity along the upper reaches of the Gongdo stage of Anseong Stream was estimated through measurements of stream-aquifer exchange rates (using a seepage meter) and vertical hydraulic gradients (using a manually driven piezometer). From the measured data, it was found out that the stream-aquifer exchange rates varied from -1.55 × 10-6 to 1.77 × 10-5 m/s, the corresponding vertical hydraulic gradient varied from -0.122 to 0.030, and the values of the streambed vertical hydraulic conductivity were estimated from 1.77 × 10-5 to 1.97 × 10-3 m/s, with variations representing local differences. The results are within the general range of streambed hydraulic conductivity values suggested by Calver (2001) and are slightly higher than values previously measured at other stream sites in Korea. The combined use of a drive-point piezometer and seepage meter (both constructed of high-strength stainless steel) is expected to be of practical use in the estimation of streambed hydraulic conductance, given the durability and portability of the instruments.

Evaluation of Yeongsan Lake Ecosystem Using Various Environment Parameters (다각적 수환경지표를 이용한 영산호의 생태영향 평가)

  • Choi, Ji-Woong;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.155-165
    • /
    • 2008
  • The purpose of this study was to evaluate the ecosystem of Yeongsan Lake using physical, chemical, and biological indicators. We evaluated the integrative ecosystem health using Lentie Ecosystem Health Assessment (LEHA) model, Qualitative Health Evaluation Index (QHEI) model, and chemical water quality. The models of LEHA and QHEI were modified as 10 and 7 metries attributes, respectively. Also, we analyzed bioaccumulation of total mercury on various fish tissues by method of U.S. EPA 7473 using Direct Mercury Analyzer (Model DMA-80). Model values of LEHA model averaged 19 (range: $14{\sim}26$, n=15), which indicated a "poor" condition, and had slightly spatial variations. Values of the QHEI in the all sites averaged 72, which were judged as a "fair" to "good" condition. The QHEI values varied from 48 (fair condition) to 99 (good condition) and showed large longitudinal gradients between the upper and lower reach. Conductivity and salinity were increased from the up-lake to downlake reach. Analysis of total mercury in fish tissues showed that levels of total Hg ranged between 0.002 and $0.087\;mg\;L^{-1}$ depending on the types of tissues. Overall, the ecosystem health in the Yeongsan Lake was judged as a "poor" and the effects of bioaccumulation on the fish tissues were minor. Therefore, it is necessary to keep an efficient management for the lake environment to maintain their ecological health.

Stereo Image-based 3D Modelling Algorithm through Efficient Extraction of Depth Feature (효율적인 깊이 특징 추출을 이용한 스테레오 영상 기반의 3차원 모델링 기법)

  • Ha, Young-Su;Lee, Heng-Suk;Han, Kyu-Phil
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.10
    • /
    • pp.520-529
    • /
    • 2005
  • A feature-based 3D modeling algorithm is presented in this paper. Since conventional methods use depth-based techniques, they need much time for the image matching to extract depth information. Even feature-based methods have less computation load than that of depth-based ones, the calculation of modeling error about whole pixels within a triangle is needed in feature-based algorithms. It also increase the computation time. Therefore, the proposed algorithm consists of three phases, which are an initial 3D model generation, model evaluation, and model refinement phases, in order to acquire an efficient 3D model. Intensity gradients and incremental Delaunay triangulation are used in the Initial model generation. In this phase, a morphological edge operator is adopted for a fast edge filtering, and the incremental Delaunay triangulation is modified to decrease the computation time by avoiding the calculation errors of whole pixels and selecting a vertex at the near of the centroid within the previous triangle. After the model generation, sparse vertices are matched, then the faces are evaluated with the size, approximation error, and disparity fluctuation of the face in evaluation stage. Thereafter, the faces which have a large error are selectively refined into smaller faces. Experimental results showed that the proposed algorithm could acquire an adaptive model with less modeling errors for both smooth and abrupt areas and could remarkably reduce the model acquisition time.

Enhanced Weighted Directional Demosaicking using Edge Indicator (에지 지시자를 이용한 향상된 방향 가중치 디모자이킹 알고리듬)

  • Ryu, Ji-Man;Yang, Si-Young;Lim, Tae-Hwan;Jung, Je-Chang
    • Journal of Broadcast Engineering
    • /
    • v.15 no.2
    • /
    • pp.265-279
    • /
    • 2010
  • A color image requires at least three color channels to obtain the full color image. However the image sensor obtains only the intensity of the brightness, that is, three image sensors are required for every pixel to capture the full color image. Since the image sensor is quiet expensive, most of digital still cameras adopt single image sensor array with color filter array (CFA) to reduce the size and the cost. Since the image obtained using single sensor array has only one color component per pixel, we need to reconstruct the missing two color components to obtain the full color image. We call this process as color filter interpolation or demosaicking. In this paper, demosaicking algorithm composed of two large step is proposed. Proposed algorithm is combined with several different algorithms such as Edge-directed demosaicking, Second-order gradients as correction terms, Smooth hue transition Interpolation, etc. The simulation results show that the proposed algorithm performs much better than the state-of-the-art demosaicking algorithms in terms of both subjective and objective qualities.

Analysis of the Effects of Drainage Systems in Wetlands Based on Changes in Groundwater Level, Soil Moisture Content, and Water Quality (지하수위, 토양수분함량 및 수질변화를 활용한 습윤화 지역의 배수시설 효과 평가)

  • Kim, Chang-Hoon;Ryu, Jeong-Ah;Kim, Deog-Geun;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.251-260
    • /
    • 2016
  • Groundwater flow due to hydraulic gradients across a geologic barrier surrounding a dam reservoir can cause swamps or wetlands to form on the downstream side of the dam, thereby restricting land use. The difference in head between the reservoir level and the downstream groundwater level creates a hydraulic gradient, allowing water to flow through the geologic barrier. We constructed a drainage system at the Daecheong dam to study the effects on groundwater levels and soil moisture contents. The drainage system consisted of a buried screened pipe spanning a depth of 1-1.5 m below a land surface. Groundwater levels were monitored at several monitoring wells before and after the drainage system was installed. Most well sites recorded a decline in groundwater level on the order of 1 m. The high-elevated site (monitoring well W1) close to the reservoir showed a significant decline in groundwater level of more than 2 m, likely due to rapid discharge by the drainage system. Soil moisture contents were also analyzed and found to have decreased after the installation of the drainage system, even considering standard deviations in the soil moisture contents. We conclude that the drainage system effectively lowered groundwater levels on the downstream side of the dam. Furthermore, we emphasize that water seepage analyses are critical to embankment dam design and construction, especially in areas where downstream land use is of interest.

Fish Fauna and Community Analysis in Heuck Stream Watershed (흑천수계의 어류상 및 군집분석)

  • Moon, Woon-Ki;Han, Jeong-Ho;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.69-81
    • /
    • 2010
  • This study was conducted at 25 sites of 6 mainstreams and 19 tributaries sites within Heuck Stream watershed during May~October 2003 for the survey of fish distributions, compositions, and community characteristics. The survey showed that total fish was identified as 9 family and 26 species in all sites, and Cyprinidae dominated the community as 15 species. The dominant species of >20% of the total were Zacco temminckii (29%), Zacco platypus (22%), and Rhynchocypris oxycephalus (21%) in the watershed. Community analysis, based on the stream spatial gradients, indicated composition differences along the main axis of the stream from the headwater to the downstream; R. oxycephalus predominated in the most headwater zone and Z. temminckii dominated in the lower headwater zone, whereas Z. temminckii -Z. platypus dominated in the mid-to-downstream, and Z. platypus dominated the community in the most downstream zone. Total endemic species was 7 family and 15 species, which is made of 50% in the fish community, so that the high proportion of endemic species indicated a healthy region in terms of fish community, compared to average 23% in Korean peninsula in general. The total number and species of fish increased as the stream order (stream size) increased, indicating that impacts on chemical pollution or habitat disturbance were not so large to the fish community in this watershed. Trophic and tolerance guilds analysis showed that relative proportions of sensitive and insectivore species were >50% in the watershed and decreased as the stream order increased, whereas relative proportions of tolerant and omnivore species showed an opposite results. These outcomes suggest that the natural condition of watershed is preserved relatively and the region should be protected from the chemical and habitat disturbace by agricultural activity and urban developments.

Initial Preliminary Studies in National Long-Term Ecological Research (LTER) Stations of Daechung Reservoir

  • Lee, Sang-Jae;Lee, Jae-Hoon;Kim, Jong-Im;La, Geung-Hwan;Yoem, Min-Ae;Shin, Woong-Ghi;Kim, Hyun-Woo;Jang, Min-Ho;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.476-486
    • /
    • 2009
  • Major objective of our study was to introduce initial researches of national long-term ecological monitoring studies on Daechung Reservoir, as one of the representative lentic reservoir ecosystems in Korea. For the long-term ecological research (LTER), we conducted preliminary field monitoring during 2008~2009 and analyzed biological parameters such as phytoplankton, zooplankton, and freshwater fish along with chemical water quality and empirical model analysis. According to phytoplankton surveys, major taxa have varied largely depending on seasons and sites sampled. Overall phytoplankton data showed that cyanophyta dominated in the summer period and diatoms dominated in the winter. In zooplankton analysis, 25 species including 20 rotifers, 3 cladocerans and 2 copepods were collected during the survey. The relative abundance of rotifers (86.5%) was always greater than that of cladocerans (6.3%) or copepods (5.1%). There were distinct spatial and inter-annual changes in the abundance of zooplankton in the reservoir, displaying similar patterns in three sites with the exception of S3 during the study. According to fish surveys, 8 families and 39 species were observed during 2008~2009. The most dominant fish was an exotic species of Lepomis macrochirus (23%), indicating an severe influence of exotic species to the ecosystem. TP averaged $17.9\;{\mu}g\;L^{-1}$ ($6{\sim}80\;{\mu}g\;L^{-1}$), which was judged as a mesotrophy, and showed a distinct longitudinal gradients. TN averaged $1.585\;{\mu}g\;L^{-1}$ during the study and judged as hypereutrophic condition. Unlike TP, TN didn't show any large seasonal and spatial variations. Under the circumstances, nitrogen limitation may not happen in this system, indicating that nitrogen control is not effective in the watershed managements. These data generated in the LTER station will provide key information on long-term biological and water quality changes in relation to global warming and some clues for efficient reservoir ecosystem managements.

Lagrangian Finite Element Analysis of Water Impact Problem (강체-유체 충격문제에 대한 Lagrangian 유한요소 해석)

  • Bum-Sang Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.60-68
    • /
    • 1991
  • The updated Lagrangian Finite Element Method is introduced to analyse rigid body-fluid impact problem which is characterized by incompressible Navier-Stokes equations and impact-contact conditions between free surface and rigid body. For the convenience of numerical computation, velocity fields are splinted into vicous and pressure parts, and then the governing equations and boundary conditions are decomposed in accordance with the decomposition. However, Viscous stresses acting an the solid boundaries are neglected on the assumption that very small velocity gradients may occur during extremely small time interval of the impact. Four coded quadrilateral elements are used to discretize the space domain and the fully explicit time-marching algorithm is employed with a reasonably small time step. At the beginning of each time step, contact velocity of the rigid body is computed from the momentum balance between the body and the fluid. The velocity field is then computed to satisfy the discretized equations of motions and incompressibility and contact constraints as well as an exact free surface boundary condition. At the end of each time step, the fluid domain is updated from the velocity field. In the present time stepping numerical analysis, behaviour of the free surface near the body can be observed without any difficulty which is very important in the water impact problem. The applicability of the algorithm is illustrated by a wedge type falling body problem. The numerical solutions for time-varying pressure distributions and impact loadings acting ion the surface are obtained.

  • PDF

Characterizing Magnetic Properties of TA (Tofua Arc) 22 Seamount (23° 34′ S) in the Lau Basin, Southwestern Pacific (남서태평양 라우분지 TA 22 해저산(23° 34′ S)에서의 지자기 특성 연구)

  • Choi, Soon Young;Kim, Chang Hwan;Park, Chan Hong;Kim, Hyung Rae
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.2
    • /
    • pp.67-81
    • /
    • 2018
  • We acquired the magnetic and bathymetry data around the TA (Tofua Arc) 22 seamount in the Lau Basin for finding submarine hydrothermal deposits. From the data, we estimated the magnetic characteristics in the study area. The bathymetry shows that TA 22 seamount consists of the western and eastern summits. Each summit exhibits a caldera. The western caldera is smaller, but deeper than the eastern caldera. The slope gradients of the TA 22 are steeper around ~1000 m depth range and relatively gentle at the summit areas with the small difference of two calderas. The magnetic properties of TA 22 seamount present high anomalies at the summit and the vicinity of the caldera. Low magnetization zones appear over the outer flanks and center of the calderas. These magnetic patterns are similar to the previous studies which had represented high anomalies and low magnetization zones inside of the summit area or on the flank of the outside of the summit area. The results of the 2D magnetic forward modeling with seismic profiles show about 20 nT of RMSEs (root mean square error) between the modeled and observed values. The low RMSEs proposes a good correlation between the modeled 2D structure and the geophysical observation in this study area. Based on the modeling and magnetization distribution, hydrothermal deposits are predicted to be located at the inner area of the calderas or at small mounds around caldera rims.