• 제목/요약/키워드: Gradient force

검색결과 276건 처리시간 0.029초

Simulation of a solar eruption with a background solar wind

  • 이환희;;강지혜
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.46.3-47
    • /
    • 2016
  • We construct a solar eruption model with a background solar wind by performing three-dimensional zero-beta magnetohydrodynamic (MHD) simulation. The initial configuration of a magnetic field is given by nonlinear force-free field (NLFFF) reconstruction applied to a flux emergence simulation. The background solar wind is driven by upflows imposed at the top boundary. We analyzed the temporal development of the Lorentz force at the flux tube axis. Based on the results, we demonstrate that a solar eruption is caused by the imbalance between magnetic pressure gradient force and magnetic tension force. We conclude that this imbalance is produced by a weak but continuously existing solar wind above an active region.

  • PDF

초소형 마이크로 부품 표면 측정 시스템 개발 (Development of a measurement system for the surface of micro-parts)

  • 홍성욱;고명준;신영현;이득우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.413-418
    • /
    • 2005
  • This paper proposes a measurement method for the surface of micro-parts by using AFM(Atomic Force Microscope). To this end, two techniques are presented to extend the capacity of AFM. First, the measurement range is extended by using an image matching method based on correlation coefficients. To account for the inaccuracy of the coarse stage implemented in AFM's, the image matching technique is applied to two neighboring images intentionally overlapped with each other. Second, a method to measure the shape of relatively large specimen is presented by using the inherent trigger mechanism due to the atomic force. The proposed method is proved effective through a series of experiments.

  • PDF

A nonlocal strain gradient theory for scale-dependent wave dispersion analysis of rotating nanobeams considering physical field effects

  • Ebrahimi, Farzad;Haghi, Parisa
    • Coupled systems mechanics
    • /
    • 제7권4호
    • /
    • pp.373-393
    • /
    • 2018
  • This paper is concerned with the wave propagation behavior of rotating functionally graded temperature-dependent nanoscale beams subjected to thermal loading based on nonlocal strain gradient stress field. Uniform, linear and nonlinear temperature distributions across the thickness are investigated. Thermo-elastic properties of FG beam change gradually according to the Mori-Tanaka distribution model in the spatial coordinate. The nanobeam is modeled via a higher-order shear deformable refined beam theory which has a trigonometric shear stress function. The governing equations are derived by Hamilton's principle as a function of axial force due to centrifugal stiffening and displacement. By applying an analytical solution and solving an eigenvalue problem, the dispersion relations of rotating FG nanobeam are obtained. Numerical results illustrate that various parameters including temperature change, angular velocity, nonlocality parameter, wave number and gradient index have significant effect on the wave dispersion characteristics of the understudy nanobeam. The outcome of this study can provide beneficial information for the next generation researches and exact design of nano-machines including nanoscale molecular bearings and nanogears, etc.

Dynamic vibration response of functionally graded porous nanoplates in thermal and magnetic fields under moving load

  • Ismail Esen;Mashhour A. Alazwari;Khalid H. Almitani;Mohamed A Eltaher;A. Abdelrahman
    • Advances in nano research
    • /
    • 제14권5호
    • /
    • pp.475-493
    • /
    • 2023
  • In the context of nonclassical nonlocal strain gradient elasticity, this article studies the free and forced responses of functionally graded material (FGM) porous nanoplates exposed to thermal and magnetic fields under a moving load. The developed mathematical model includes shear deformation, size-scale, miscorstructure influences in the framework of higher order shear deformation theory (HSDT) and nonlocal strain gradient theory (NSGT), respectively. To explore the porosity effect, the study considers four different porosity models across the thickness: uniform, symmetrical, asymmetric bottom, and asymmetric top distributions. The system of quations of motion of the FGM porous nanoplate, including the effects of thermal load, Lorentz force, due to the magnetic field and moving load, are derived using the Hamilton's principle, and then solved analytically by employing the Navier method. For the free and forced responses of the nanoplate, the effects of nonlocal elasticity, strain gradient elasticity, temperature rise, magnetic field intensity, porosity volume fraction, and porosity distribution are analyzed. It is found that the forced vibrations of FGM porous nanoplates under thermal and live loads can be damped by applying a directed magnetic field.

A new conjugate gradient method for dynamic load identification of airfoil structure with randomness

  • Lin J. Wang;Jia H. Li;You X. Xie
    • Structural Engineering and Mechanics
    • /
    • 제88권4호
    • /
    • pp.301-309
    • /
    • 2023
  • In this paper, a new modified conjugate gradient (MCG) method is presented which is based on a new gradient regularizer, and this method is used to identify the dynamic load on airfoil structure without and with considering random structure parameters. First of all, the newly proposed algorithm is proved to be efficient and convergent through the rigorous mathematics theory and the numerical results of determinate dynamic load identification. Secondly, using the perturbation method, we transform uncertain inverse problem about force reconstruction into determinate load identification problem. Lastly, the statistical characteristics of identified load are evaluated by statistical methods. Especially, this newly proposed approach has successfully solved determinate and uncertain inverse problems about dynamic load identification. Numerical simulations validate that the newly developed method in this paper is feasible and stable in solving load identification problems without and with considering random structure parameters. Additionally, it also shows that most of the observation error of the proposed algorithm in solving dynamic load identification of deterministic and random structure is respectively within 11.13%, 20%.

CMP에서의 스틱-슬립 마찰특성에 관한 연구 (A Study on the Characteristics of Stick-slip Friction in CMP)

  • 이현섭;박범영;서헌덕;박기현;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제18권4호
    • /
    • pp.313-320
    • /
    • 2005
  • Stick-slip friction is one of the material removal mechanisms in tribology. It occurs when the static friction force is larger than the dynamic friction force, and make the friction curve fluctuated. In the friction monitoring of chemical mechanical polishing(CMP), the friction force also vibrates just as stick-slip friction. In this paper, an attempt to show the similarity between stick-slip friction and the friction of CMP was conducted. The prepared hard pa(IC1000/Suba400 stacked/sup TM/) and soft pad(Suba400/sup TM/) were tested with SiO₂ slurry. The friction force was measured by piezoelectric sensor. According to this experiment, it was shown that as the head and table velocity became faster, the stick-slip time shortened because of the change of real contact area. And, the gradient of stick-slip period as a function of head and table speed in soft pad was more precipitous than that of hard one. From these results, it seems that the fluctuating friction force in CMP is stick-slip friction caused by viscoelastic behavior of the pad and the change of real contact area.

실차 주행시험을 통한 디스크-패드 마찰계수 측정방법 (Measuring methods for friction coefficient of disc-pad through running test)

  • 목진용;김영국;김석원;박찬경;김기환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.996-1001
    • /
    • 2008
  • To stop the train safely within the limited traveling distance and reduce its speed to the desired speed, it is necessary to guarantee the correct braking force. Presently, most trains have electric propulsion system and have adopted combined electrical and mechanical(friction) braking system. The friction coefficient between brake disc and pad is an important parameter in determining the mechanical braking force. In general, friction coefficient data of braking material have been taken through the dynamo-test in a laboratory. This study have suggested two methodologies that can measure friction coefficient of braking material on the train's actual operating condition. The first is the direct method; measure the brake force and the clamping force applied on the mechanical brake by using strain gauges installed at the brake disk, and then calculate it. The second method is the indirect method; obtain the friction coefficient by using the train load and the equivalent brake force which is deducted the longitudinal force, such as resistance to motion, gradient resistance and curved resistance, from the inertia force applied to the train.

  • PDF

Clostridium acetobutylicum의 내산성 기작

  • 김병홍
    • 미생물과산업
    • /
    • 제11권1호
    • /
    • pp.3-7
    • /
    • 1985
  • 미생물은 고등생물과 그들이 생육하는 환경을 조절할 수 있는 능력이 제한되어 있다. 환경 변화에 따라 자신을 적응시킬 수 있는 능력이 있어야 끊임없이 변하는 환경에서 살아 남을 수 있고 다른 미생물과의 경재에서 이길 수 있다. 온도, 삼투압, 영양물질의 온도, 수소 ion농도는 자연계에서 짧은 시간에 넓은 폭으로 변하며 미생물에서 energy 대사의 중심이 되는 proton motive force를 이루는 proton gradient (.DELTA.pH)의 크기를 결정한는 중요한 환경인자이다.

  • PDF