• Title/Summary/Keyword: Gradient force

Search Result 276, Processing Time 0.031 seconds

Fabrication of nanohoneycomb structures and measurement of pore sizes (나노허니컴 구조물의 제작 및 홀 사이즈 측정)

  • Choi, Duk-Kyun;Lee, Pyung-Soo;Hwang, Woon-Bong;Lee, Kun-Hong
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.265-268
    • /
    • 2005
  • A new method for measurement of the pore size in a nanohoneycomb structure using atomic force microscopy (AFM) was proposed. Porous type anodic aluminum oxide (AAO) was fabricated as a nanohoneycomb structure to measure the pore size. For measuring pore sizes from AFM images, a criterion was set in porous type AAO. The pore sizes from AFM images were compared with those from SEM images, and the results showed good agreement. The relationship between the pore size and widening time was found to be linear in the range of this study. It was understood as the synchronized effects of the impurity gradient in outer oxide of AAO, mechanical packing and mass transfer increase.

  • PDF

The Analysis of the Slope Stability for the Small Dam (Small Dam의 斜面安定 解析)

  • Choi, Ki-Bong;Bae, Woo-Soek
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.88-92
    • /
    • 2004
  • The paper decribes a procedure for the evaluation of the effect of seepage force on stability of slopes. The stability of an embankment impounding a water reservoir is highly depend upon the location of seepage line with the embankment. To evaluate the accurate safety factor of an embankment, it is important to illustrate the seepage phenomenon. Of particular interest is the stability following a rapid change of reservoir level. Seepage forces in embankments are easily determined interest is the stability following a rapid change of resrvoir level. Seepage forces in embankments are easily detemined if frictional forces are expressed in relation to hydraulic gradient I. If a piezometer is inserted into a body of embankment, the level to which fee water rises is a measure of the energy at that point.

Adhesion Estimation and Modeling on Traction Characteristic of Vehicle (차량 견인특성모델링 및 점착력 추정)

  • Byun, Yeun-Sub;Kim, Min-Soo;Mok, Jei-Kyun;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1765_1766
    • /
    • 2009
  • In this paper, we propose the mathematical model for the vehicle system and the observer for adhesion force. To model the dynamic properties of vehicle system, we have considered two fundamental parts. The first part is the motion equations for vehicle based on Newton's second law. The second part is the torque dynamics of the traction motor. These parts are affected by outer conditions such as adhesive coefficient, running resistance and gradient resistance. The each parts are presented by the numerical formula. From two equations, we get the observer on adhesion force. Simulation results show that the proposed observer have the good performance compared with the normal observer.

  • PDF

Microfluidic chip for the analysis of bacterial chemotaxis (박테리아 주화성 검사용 마이크로 플루이딕 칩)

  • Lee, Sang-Ho;Jeong, Heon-Ho;Kim, Ki-Young;Lee, Chang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1521_1522
    • /
    • 2009
  • Chemotaxis is the directed movement of cells in gradients of signaling molecules, an essential biological process that underlies morhpogenesis during development, and the recruitment of immune cells to sites of infection. Especially, bacterial chemotaxis has utilized as an important prelude to study metabolism, prey-predator relationship, symbiosis, other ecological interactions in microbial communities. Recently, novel analytical formats integrated with microfluidics were introduced to investigate the chemotaxis of the cells with the precise control of chemical gradient and small volume of cells. In this study, we present a method to detect bacterial chemotaxis by direct fluidic contacting. The developed fluidic-handling method is driven by capillary force, hydrophobic barrier and a cohesion force between fluids. We have investigated the chemotactic response of E Coli. and Pseudomonas aeruginosa to three kinds of chemoeffectors such as HEPES buffer, peptone and chloroform.

  • PDF

Numerical Analysis of Impurity Transport Along Magnetic Field Lines in Tokamak Scrape-011 Layer

  • Chung, Tae-Kyun;Hong, Sang-Hee
    • Nuclear Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.17-25
    • /
    • 1998
  • Transport of carbon and boron impurity ions parallel to magnetic field lines in the tokamak SOL (scrape-off layer) is numerically investigated for a one-dimensional steady state. The spatial distributions of density and velocity of the impurity ions in a steady state are calculated by finite difference method for a single-fluid model. The calculated results show that among forces acting on SOL particles thermal force produced tv plasma temperature gradient is a principal force determining the feature of impurity distribution profiles in the tokamak edge. However, strong collisional friction forces appearing dominant in front of the diverter plate restrain impurity ion flows due to temperature gradients from moving toward the midplane. Consequently, the stagnation point develops in the impurity flow by these two forces near the diverter region, in which ion flows change their directions. Impurity ions turn out to be accumulated at the stagnation points, where peaked profiles of highly-ionized state ions are relatively predominant over those of low-ionized state ions.

  • PDF

Flow in turbulent boundary layers with coriolis force (코리올리힘 이 作용하는 亂流境界層內 의 流動 에 관한 硏究)

  • 이규한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.181-189
    • /
    • 1985
  • The effect of the Coriolis force on the 2-D turbulent boundary layer which is developed in the side wall of the rotating rectangular flow channel was investigated. In this study, we measured mean velocities, turbulent velocity components(axial as well as lateral ones) and Reynolds stresses of the turbulent boundary layer. For high Reynolds number flows, the turbulent boundary layer without pressure gradient is hardly affected by the rotation. For low Reynolds number flows, however, the shearing stress at suction side decreases. Consequently, the velocity near the wall become slower so that the thickness of the viscous sublayer expands. On the other hand, the velocity near the wall at pressure side turns out increased.

Optical Trapping of Microparticles Using a 790 nm Semiconductor Laser (790 nm의 반도체 레이저를 이용한 미세 입자의 포획)

  • 유석진;이진서;안지수;권남익
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.24-27
    • /
    • 1996
  • We describe the optical trapping of yeast particles of $3~4\mu\textrm{m}$ in water solution using a diode laser operating at 790 nm. The yeast particles are trapped by a laser focus and are moved in 2- or 3-dimensions. This confirms the concept of negative light pressure by the gradient force due to the difference of the index of refractions of solutions and particles. By moving yeast particle vertically to the laser beam axis, we measured the horizontal component of the trapping force and compared it with the laser power.

  • PDF

Separation of Neutral Molecules by the Dipole Force of a Focused Nonresonant Laser Pulse (집광된 비공명레이저펄스의 쌍극자힘에 의한 중성 분자들의 분리)

  • Zhao, Bum-Suk;Lee, Sung-Hyup. Chung, Hoi-Sung;Hwang, Sun-Gu;Kang, Wee-Kyung;Chung, Doo-Soo
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.272-273
    • /
    • 2001
  • We demonstrate the first separation of neutral molecules using optical forces. Unlike laser atomic cooling or optical tweezers, optical separation technique requires the manipulation of only one component of the molecular motion. Thus the mixtures can be separated, in principle, with less complex schemes. When an Intense nonresonant laser beam is focused onto a beam of molecules, the interaction between the laser electric field and the induced dipole moment of a molecule invokes a mechanical force on the molecule proportional to the field gradient and the molecular polarizability ($\alpha$) to mass (m) ratio $\alpha$/m. (omitted)

  • PDF

Optimal Design of Extremely Small Thrust VCM for Nanoindenter (나노 인덴터용 미소 추력 보이스코일 모터의 최적 설계)

  • 조주희;이진우;이철규;권병일
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.69-75
    • /
    • 2004
  • In this paper, we propose the shape of extremely small thrust VCM for application of the Nanoindenter, which enables control of very small force and displacement. We performed optimization of the VCM shape using conjugated gradient method. And the purposes of optimization are the minimization of the permanent magnet size for the efficient systems, minimization of deviation of flux density from the air gap for operate on regular thrust and a linearization of thrust for a good control characteristic. The finite element method is used for characteristic analysis. The node moving method is used to redundant changes of design variables. As a result, the VCM produces a yew small force by the difference of flux density of lower part from higher one. Also, in a wide range of current (0[A]-1[A]), the VCM produces linear driving thrust by saturating the magnetic circuit path and operate on regular thrust by minimizing deviation of flux density of the air gap.

The Theoritical Analysis of the Slope Stability subjected to Seepage Force (침투력을 고려한 사면안정의 이론적 해석)

  • Gi-Bong Choi
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.151-155
    • /
    • 1996
  • The main purpose of this study was to develop a useful method for analysing slope stability by seepage force. The stability of an embankment impounding a water reservoir is highly depend upon the location of seepage line with the embankment, it is important to illustrate the seepage phenomenon. Of particular interest is the stability following a rapid rise change of reservoir level. Seepage forces in embankments are easily determined if frictional forces are expressed in relation to hydraulic gradient i. Seepage forces can combine with soil weights to improve stability or worsen it, depending on the direction in which the forces act ;n relation to the geometric cross section.

  • PDF