• 제목/요약/키워드: Gradient feature

Search Result 287, Processing Time 0.022 seconds

A New Image Enhancement Algorithm Based on Bidirectional Diffusion

  • Wang, Zhonghua;Huang, Xiaoming;Huang, Faliang
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.49-60
    • /
    • 2020
  • To solve the edge ringing or block effect caused by the partial differential diffusion in image enhancement domain, a new image enhancement algorithm based on bidirectional diffusion, which smooths the flat region or isolated noise region and sharpens the edge region in different types of defect images on aviation composites, is presented. Taking the image pixel's neighborhood intensity and spatial characteristics as the attribute descriptor, the presented bidirectional diffusion model adaptively chooses different diffusion criteria in different defect image regions, which are elaborated are as follows. The forward diffusion is adopted to denoise along the pixel's gradient direction and edge direction in the pixel's smoothing area while the backward diffusion is used to sharpen along the pixel's gradient direction and the forward diffusion is used to smooth along the pixel's edge direction in the pixel's edge region. The comparison experiments were implemented in the delamination, inclusion, channel, shrinkage, blowhole and crack defect images, and the comparison results indicate that our algorithm not only preserves the image feature better but also improves the image contrast more obviously.

Line feature extraction in a noisy image

  • Lee, Joon-Woong;Oh, Hak-Seo;Kweon, In-So
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.137-140
    • /
    • 1996
  • Finding line segments in an intensity image has been one of the most fundamental issues in computer vision. In complex scenes, it is hard to detect the locations of point features. Line features are more robust in providing greater positional accuracy. In this paper we present a robust "line features extraction" algorithm which extracts line feature in a single pass without using any assumptions and constraints. Our algorithm consists of five steps: (1) edge scanning, (2) edge normalization, (3) line-blob extraction, (4) line-feature computation, and (5) line linking. By using edge scanning, the computational complexity due to too many edge pixels is drastically reduced. Edge normalization improves the local quantization error induced from the gradient space partitioning and minimizes perturbations on edge orientation. We also analyze the effects of edge processing, and the least squares-based method and the principal axis-based method on the computation of line orientation. We show its efficiency with some real images.al images.

  • PDF

Image Registration for High-Quality Vessel Visualization in Angiography (혈관조영영상에서 고화질 혈관가시화를 위한 영상정합)

  • Hong, Helen;Lee, Ho;Shin, Yeong-Gil
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.11a
    • /
    • pp.201-206
    • /
    • 2003
  • In clinical practice, CT Angiography is a powerful technique for the visualziation of blood flow in arterial vessels throughout the body. However CT Angiography images of blood vessels anywhere in the body may be fuzzy if the patient moves during the exam. In this paper, we propose a novel technique for removing global motion artifacts in the 3D space. The proposed methods are based on the two key ideas as follows. First, the method involves the extraction of a set of feature points by using a 3D edge detection technique based on image gradient of the mask volume where enhanced vessels cannot be expected to appear, Second, the corresponding set of feature points in the contrast volume are determined by correlation-based registration. The proposed method has been successfully applied to pre- and post-contrast CTA brain dataset. Since the registration for motion correction estimates correlation between feature points extracted from skull area in mask and contrast volume, it offers an accelerated technique to accurately visualize blood vessels of the brain.

  • PDF

Human and Robot Tracking Using Histogram of Oriented Gradient Feature

  • Lee, Jeong-eom;Yi, Chong-ho;Kim, Dong-won
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.18-25
    • /
    • 2018
  • This paper describes a real-time human and robot tracking method in Intelligent Space with multi-camera networks. The proposed method detects candidates for humans and robots by using the histogram of oriented gradients (HOG) feature in an image. To classify humans and robots from the candidates in real time, we apply cascaded structure to constructing a strong classifier which consists of many weak classifiers as follows: a linear support vector machine (SVM) and a radial-basis function (RBF) SVM. By using the multiple view geometry, the method estimates the 3D position of humans and robots from their 2D coordinates on image coordinate system, and tracks their positions by using stochastic approach. To test the performance of the method, humans and robots are asked to move according to given rectangular and circular paths. Experimental results show that the proposed method is able to reduce the localization error and be good for a practical application of human-centered services in the Intelligent Space.

Fault Diagnosis for Rotating Machine Using Feature Extraction and Minimum Detection Error Algorithm (특징 추출과 검출 오차 최소화 알고리듬을 이용한 회전기계의 결함 진단)

  • Chong, Ui-pil;Cho, Sang-jin;Lee, Jae-yeal
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.27-33
    • /
    • 2006
  • Fault diagnosis and condition monitoring for rotating machines are important for efficiency and accident prevention. The process of fault diagnosis is to extract the feature of signals and to classify each state. Conventionally, fault diagnosis has been developed by combining signal processing techniques for spectral analysis and pattern recognition, however these methods are not able to diagnose correctly for certain rotating machines and some faulty phenomena. In this paper, we add a minimum detection error algorithm to the previous method to reduce detection error rate. Vibration signals of the induction motor are measured and divided into subband signals. Each subband signal is processed to obtain the RMS, standard deviation and the statistic data for constructing the feature extraction vectors. We make a study of the fault diagnosis system that the feature extraction vectors are applied to K-means clustering algorithm and minimum detection error algorithm.

Motion Derivatives based Entropy Feature Extraction Using High-Range Resolution Profiles for Estimating the Number of Targets and Seduction Chaff Detection (표적 개수 추정 및 근접 채프 탐지를 위한 고해상도 거리 프로파일을 이용한 움직임 미분 기반 엔트로피 특징 추출 기법)

  • Lee, Jung-Won;Choi, Gak-Gyu;Na, Kyoungil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.207-214
    • /
    • 2019
  • This paper proposes a new feature extraction method for automatically estimating the number of target and detecting the chaff using high range resolution profile(HRRP). Feature of one-dimensional range profile is expected to be limited or missing due to lack of information according to the time. The proposed method considers the dynamic movements of targets depending on the radial velocity. The observed HRRP sequence is used to construct a time-range distribution matrix, then assuming diverse radial velocities reflect the number of target and seduction chaff launch, the proposed method utilizes the characteristic of the gradient distribution on the time-range distribution matrix image, which is validated by electromagnetic computation data and dynamic simulation.

Content-based Image Retrieval Using Color Adjacency and Gradient (칼라 인접성과 기울기를 이용한 내용 기반 영상 검색)

  • Jin, Hong-Yan;Lee, Ho-Young;Kim, Hee-Soo;Kim, Gi-Seok;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.1
    • /
    • pp.104-115
    • /
    • 2001
  • A new content-based color image retrieval method integrating the features of the color adjacency and the gradient is proposed in this paper. As the most used feature of color image, color histogram has its own advantages that it is invariant to the changes in viewpoint and the rotation of the image etc., and the computation of the feature is simple and fast. However, it is difficult to distinguish those different images having similar color distributions using histogram-based image retrieval, because the color histogram is generated on uniformly quantized colors and the histogram itself contains no spatial information. And another shortcoming of the histogram-based image retrieval is the storage of the features is usually very large. In order to prevent the above drawbacks, the gradient that is the largest color difference of neighboring pixels is calculated in the proposed method instead of the uniform quantization which is commonly used at most histogram-based methods. And the color adjacency information which indicates major color composition feature of an image is extracted and represented as a binary form to reduce the amount of feature storage. The two features are integrated to allow the retrieval more robust to the changes of various external conditions.

  • PDF

Predicting Determinants of Seoul-Bike Data Using Optimized Gradient-Boost (최적화된 Gradient-Boost를 사용한 서울 자전거 데이터의 결정 요인 예측)

  • Kim, Chayoung;Kim, Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.861-866
    • /
    • 2022
  • Seoul introduced the shared bicycle system, "Seoul Public Bike" in 2015 to help reduce traffic volume and air pollution. Hence, to solve various problems according to the supply and demand of the shared bicycle system, "Seoul Public Bike," several studies are being conducted. Most of the research is a strategic "Bicycle Rearrangement" in regard to the imbalance between supply and demand. Moreover, most of these studies predict demand by grouping features such as weather or season. In previous studies, demand was predicted by time-series-analysis. However, recently, studies that predict demand using deep learning or machine learning are emerging. In this paper, we can show that demand prediction can be made a little better by discovering new features or ordering the importance of various features based on well-known feature-patterns. In this study, by ordering the selection of new features or the importance of the features, a better coefficient of determination can be obtained even if the well-known deep learning or machine learning or time-series-analysis is exploited as it is. Therefore, we could be a better one for demand prediction.

Optimizing Feature Extractioin for Multiclass problems Based on Classification Error (다중 클래스 데이터를 위한 분류오차 최소화기반 특징추출 기법)

  • Choi, Eui-Sun;Lee, Chul-Hee
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.2
    • /
    • pp.39-49
    • /
    • 2000
  • In this paper, we propose an optimizing feature extraction method for multiclass problems assuming normal distributions. Initially, We start with an arbitrary feature vector Assuming that the feature vector is used for classification, we compute the classification error Then we move the feature vector slightly in the direction so that classification error decreases most rapidly This can be done by taking gradient We propose two search methods, sequential search and global search In the sequential search, an additional feature vector is selected so that it provides the best accuracy along with the already chosen feature vectors In the global search, we are not constrained to use the chosen feature vectors Experimental results show that the proposed algorithm provides a favorable performance.

  • PDF

Medical Image Classification and Retrieval Using BoF Feature Histogram with Random Forest Classifier (Random Forest 분류기와 Bag-of-Feature 특징 히스토그램을 이용한 의료영상 자동 분류 및 검색)

  • Son, Jung Eun;Ko, Byoung Chul;Nam, Jae Yeal
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.4
    • /
    • pp.273-280
    • /
    • 2013
  • This paper presents novel OCS-LBP (Oriented Center Symmetric Local Binary Patterns) based on orientation of pixel gradient and image retrieval system based on BoF (Bag-of-Feature) and random forest classifier. Feature vectors extracted from training data are clustered into code book and each feature is transformed new BoF feature using code book. BoF features are applied to random forest for training and random forest having N classes is constructed by combining several decision trees. For testing, the same OCS-LBP feature is extracted from a query image and BoF is applied to trained random forest classifier. In contrast to conventional retrieval system, query image selects similar K-nearest neighbor (K-NN) classes after random forest is performed. Then, Top K similar images are retrieved from database images that are only labeled K-NN classes. Compared with other retrieval algorithms, the proposed method shows both fast processing time and improved retrieval performance.