• Title/Summary/Keyword: Gradient Vector Flow

Search Result 39, Processing Time 0.024 seconds

A Study on GPU Computing of Bi-conjugate Gradient Method for Finite Element Analysis of the Incompressible Navier-Stokes Equations (유한요소 비압축성 유동장 해석을 위한 이중공액구배법의 GPU 기반 연산에 대한 연구)

  • Yoon, Jong Seon;Jeon, Byoung Jin;Jung, Hye Dong;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.597-604
    • /
    • 2016
  • A parallel algorithm of bi-conjugate gradient method was developed based on CUDA for parallel computation of the incompressible Navier-Stokes equations. The governing equations were discretized using splitting P2P1 finite element method. Asymmetric stenotic flow problem was solved to validate the proposed algorithm, and then the parallel performance of the GPU was examined by measuring the elapsed times. Further, the GPU performance for sparse matrix-vector multiplication was also investigated with a matrix of fluid-structure interaction problem. A kernel was generated to simultaneously compute the inner product of each row of sparse matrix and a vector. In addition, the kernel was optimized to improve the performance by using both parallel reduction and memory coalescing. In the kernel construction, the effect of warp on the parallel performance of the present CUDA was also examined. The present GPU computation was more than 7 times faster than the single CPU by double precision.

Film Cooling Characteristics with Sunk or Lifted Upstream Wall (슬롯출구 상류면의 상승과 하강에 따른 막냉각 특성)

  • Rho, Suk-Man;Son, Chang-Ho;Lee, Geun-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.377-381
    • /
    • 2001
  • Film cooling characteristics has been investigated numerically with the aid of FLUENT software for the sunk or the lifted upstream wall from the slot injection exit. In this study, with the fixed blowing ratio of 1 and the fixed coolant injection angle of $30^{\circ}$, the downstream flow field and the downstream temperature field were examined in terms of velocity vector, turbulent kinetic energy, temperature contours, and downstream wall temperature. Upstream wall was sunk or lifted from 1d to 5d(d=slot width). The result shows that the up-Id upstream wall has the best film cooling performance. This is due to the fact that the up-1d upstream wall configuration reduces velocity gradient just enough to minimize the turbulent mixing between the mainstream and the coolant just off the slot exit.

  • PDF

A Verification of the Accuracy of the Deformable Model in 3 Dimensional Vessel Surface Reconstruction (혈관표면의 3차원 재구성을 위한 Deformable model의 정확성 검증에 관한 연구)

  • Kim, H.C.;Oh, J.S.;Kim, H.R.;Cho, S.B.;Sun, K.;Kim, M.G.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.3-5
    • /
    • 2005
  • Vessel boundary detection and modeling is a difficult but a necessary task in analyzing the mechanics of inflammation and the structure of the microvasculature. In this paper we present a method of analyzing the structure by means of an active contour model(using GVF Snake) for vessel boundary detection and 3D reconstruction. For this purpose we used a virtual vessel model and produced a phantom model. From these phantom images we obtained the contours of the vessel by GVF Snake and then reconstructed a 3D structure by using the coordinates of snakes.

  • PDF

Digital Endoscopic Image Segmentation using Deformable Models

  • Yoon, Sung-Won;Kim, Jeong-Hoon;Lee, Myoung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.57.4-57
    • /
    • 2002
  • $\textbullet$ Image segmentation is an essential technique of image analysis. In spite of the traditional issues in contour initialization and boundary concavities, active contour models(snakes) are popular and known as successful methods for segmentation. $\textbullet$ We could find in experiment that snake using Gaussian External Force is fast in time but low in accuracy and snake using Gradient Vector Flow by Chenyang Xu and Jerry L. Prince is high in accuracy but slow in time. $\textbullet$ In this paper, we presented a new active contour model, GGF snake, for segmentation of endoscopic image. Proposed GGF snake made up for the defects of the traditional snakes in contour initialization and boundary...

  • PDF

Numerical Analysis on Velocity Fields around Seabed Tiller for the Improvement of Seabed Soil (해저 토질 개선을 위한 해저경운기 주변의 속도장에 대한 수치해석)

  • Kim, Jang-Kweon;Oh, Seok-Hyung;Kim, Jong-Beom;Chung, Sang-Ok
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.48-56
    • /
    • 2017
  • The steady-state, incompressible and three-dimensional numerical analysis was carried out to evaluate the velocity fields around the seabed tiller used for the improvement of the seabed soil and the pulling force and buoyancy generated by driving the seabed tiller. The turbulence model used in this study is a realizable $k-{\varepsilon}$ well known to be excellent for predicting the performance of the flow separation and recirculation flow as well as the boundary layer with rotation and strong back pressure gradient. As a results, a typical vortex pair appears near the adjacent rotor vane tip. When the current is stopped, there is no force when pulling the seabed tiller, but when the current flows at 1.2 knots, the force acts on the downstream side and the pulling force is much greater. In stationary currents, the buoyancy of the seabed tiller acts more strongly towards the seabed as the number of rotations of the rotor increases, but acts more strongly toward the sea surface at 1.2 knots of current.

Numerical Analysis of Extrusion Processes of Particle Filled Plastic Materials Subject to Slip at the Wall (미끄럼현상을 갖는 입자충전 플라스틱재료의 압출공정 수치해석)

  • 김시조;권태헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2585-2596
    • /
    • 1994
  • Many particle filled materials like Poweder/Binder mixtures for poweder injection moldings, have complicated rheological behaviors such as an yield stress and slip phenomena. In the present study, numerical simulation programs via a finite element method and a finite difference method were developed for the quasi-three-dimensional flows and the two-dimensional flow models, respectively, with the slip phenomena taken into account in terms of a slip velocity. In order to qualitatively understand the slip effects, typical numerical results such as vector plots, pressure contours in the cross-channel plane, and isovelocity controus for the down-channel direction were discussed with respect to various slip coefficients. Slip velocities along the boudary surfaces were also investigated to find the effects of the slip coefficient and processing conditions on the overall flow behavior. Based on extensive numerical calculations varying the slip coefficients, pressure gradient, aspect ratio, and power law index, the screw characteristics of the extrusion process were studied in particular with comparisons between the slip model and non-slip model.

Numerical Simulation of Shock Wave Reflecting Patterns for Different Flow Conditions

  • Choi, Sung-Yoon;Oh, Se-Jong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.74-85
    • /
    • 2002
  • The numerical experiment has been conducted to investigate the unsteady shock wave reflecting phenomena. The cell-vertex finite-volume, Roe's upwind flux difference splitting method with unstructured grid is implemented to solve unsteady Euler equations. The $4^{th}$-order Runge-Kutta method is applied for time integration. A linear reconstruction of the flux vector using the least-square method is applied to obtain the $2^{nd}$-order accuracy for the spatial derivatives. For a better resolution of the shock wave and slipline, the dynamic grid adaptation technique is adopted. The new concept of grid adaptation technique, which is much simpler than that of conventional techniques, is introduced for the current study. Three error indicators (divergence and curl of velocity, and gradient of density) are used for the grid adaptation procedure. Considering the quality of the solution and the numerical efficiency, the grid adaptation procedure was updated up to $2^{nd}$ level at every 20 time steps. For the convenience of comparison with other experimental and analytical results, the case of interaction between the straight incoming shock wave and a sharp wedge is simulated for various flow conditions. The numerical results show good agreement with other experimental and analytical results, in the shock wave reflecting structure, slipline, and the trajectory of the triple points. Some critical cases show disagreement with the analytical results, but these cases also have been proven to show hysteresis phenomena.

Application Consideration of Machine Learning Techniques in Satellite Systems

  • Jin-keun Hong
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.48-60
    • /
    • 2024
  • With the exponential growth of satellite data utilization, machine learning has become pivotal in enhancing innovation and cybersecurity in satellite systems. This paper investigates the role of machine learning techniques in identifying and mitigating vulnerabilities and code smells within satellite software. We explore satellite system architecture and survey applications like vulnerability analysis, source code refactoring, and security flaw detection, emphasizing feature extraction methodologies such as Abstract Syntax Trees (AST) and Control Flow Graphs (CFG). We present practical examples of feature extraction and training models using machine learning techniques like Random Forests, Support Vector Machines, and Gradient Boosting. Additionally, we review open-access satellite datasets and address prevalent code smells through systematic refactoring solutions. By integrating continuous code review and refactoring into satellite software development, this research aims to improve maintainability, scalability, and cybersecurity, providing novel insights for the advancement of satellite software development and security. The value of this paper lies in its focus on addressing the identification of vulnerabilities and resolution of code smells in satellite software. In terms of the authors' contributions, we detail methods for applying machine learning to identify potential vulnerabilities and code smells in satellite software. Furthermore, the study presents techniques for feature extraction and model training, utilizing Abstract Syntax Trees (AST) and Control Flow Graphs (CFG) to extract relevant features for machine learning training. Regarding the results, we discuss the analysis of vulnerabilities, the identification of code smells, maintenance, and security enhancement through practical examples. This underscores the significant improvement in the maintainability and scalability of satellite software through continuous code review and refactoring.

Prediction of Combined Forced and Natural Turbulent Convection in a Vertical Plane Channel with an Elliptic-Blending Second Moment Closure (타원-혼합 2차모멘트 모형에 의한 강제와 자연대류가 복합된 수직 평판 난류유동의 예측)

  • Shin, Jong Keun;An, Jeong Soo;Choi, Young Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1265-1276
    • /
    • 2005
  • The elliptic conceptual second moment models for turbulent heat fluxes, which are proposed on the basis of elliptic-blending and elliptic-relaxation equations, are applied to calculate the combined forced and natural turbulent convection in a vertical plane channel. The models satisfy the near-wall balance between viscous diffusion, viscous dissipation and temperature-pressure gradient correlation, and also have the characteristics of approaching its respective conventional high Reynolds number model far away from the wall. Also the models are closely linked to the elliptic blending model which is used for the prediction of Reynolds stress. In order to calibrate the heat flux models, firstly, the distributions of mean temperature and scala flux in fully developed channel flow with constant wall difference temperature are solved by the present models. The buoyancy effect on the turbulent characteristics including the mean velocity and temperature, the Reynolds stress tensor, and the turbulent heat flux vector are examined. In the opposing flow, the turbulent transport is greatly enhanced with both the Reynolds stresses and the turbulent heat fluxes being remarkably increased; whereas, in the aiding flow, the opposite change is observed. The results of prediction are directly compared to the DNS to assess the performance of the model predictions and show that the behaviors of the turbulent heat transfer in the whole flow region are well captured by the present models.

Prediction of aerodynamic force coefficients and flow fields of airfoils using CNN and Encoder-Decoder models (합성곱 신경망과 인코더-디코더 모델들을 이용한 익형의 유체력 계수와 유동장 예측)

  • Janghoon, Seo;Hyun Sik, Yoon;Min Il, Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.94-101
    • /
    • 2022
  • The evaluation of the drag and lift as the aerodynamic performance of airfoils is essential. In addition, the analysis of the velocity and pressure fields is needed to support the physical mechanism of the force coefficients of the airfoil. Thus, the present study aims at establishing two different deep learning models to predict force coefficients and flow fields of the airfoil. One is the convolutional neural network (CNN) model to predict drag and lift coefficients of airfoil. Another is the Encoder-Decoder (ED) model to predict pressure distribution and velocity vector field. The images of airfoil section are applied as the input data of both models. Thus, the computational fluid dynamics (CFD) is adopted to form the dataset to training and test of both CNN models. The models are established by the convergence performance for the various hyperparameters. The prediction capability of the established CNN model and ED model is evaluated for the various NACA sections by comparing the true results obtained by the CFD, resulting in the high accurate prediction. It is noted that the predicted results near the leading edge, where the velocity has sharp gradient, reveal relatively lower accuracies. Therefore, the more and high resolved dataset are required to improve the highly nonlinear flow fields.