• Title/Summary/Keyword: Gradient Thickness

Search Result 386, Processing Time 0.031 seconds

Stress Measurement of films using surface micromachined test structures (표면 미세 가공된 구조체를 이용한 박막의 응력 측정)

  • 이창승;정회환;노광수;이종현;유형준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.721-725
    • /
    • 1996
  • The microfabricated test structures were used in order to evaluate the stress characteristics in films. The test structures were fabricated using surface micromachining technique, including HF vapor phase etching as an effective release method. The fabricated structures were micro strain gauge, cantilever-type vernier gauge and bridge for stress measurement, and cantilever for stress gradient measurement. The strain was measures by observing the deformation of the structures occurred after release etching and the amount of deformation can be detected by micro vernier gauge, which has gauge resolution of 0.2${\mu}{\textrm}{m}$. The detection principles and the degree of precision for the measured strain were also discussed. The characteristics of residual stress in LPCVD polysilicon films were studied using these test structures. The stress gradient due to the stress variation through the film thickness was calculated by measuring the deflection at the cantilever free end.

  • PDF

Effect of Heating Rate and Pressure on Pore Growth of Porous Carbon Materials

  • Cho, Kwang-Youn;Kim, Kyong-Ja;Riu, Doh-Hyung
    • Carbon letters
    • /
    • v.7 no.4
    • /
    • pp.271-276
    • /
    • 2006
  • Porous carbon materials were prepared with a thermal treatment of coal tar pitch at 550 in the Ar gas. Growth, merger, and distribution of pore were characterized with scanning electron microscopy as variation ascending temperature gradient and chamber pressure. After graphitizing at the 2600 (1 hr.), walls and connecting parts between pores were investigated with X-ray diffraction patterns. Wall thickness and pore size decreases as increasing ascending temperature gradient, and pore size becomes homogeneous. Graphite quality and thermal conductivity become higher due to the enhanced orientation of walls and connecting parts between pores.

  • PDF

NUMERICAL ANALYSIS FOR CONDUCTION HEAT TRANSFER AND APPRAISAL OF PERFORMANCE INDICES IN LED MONITOR FOR LAPTOP COMPUTER (노트북 LED 영상장치 내부의 전도열전달 해석과 성능 지수 평가)

  • Park, I.S.;Sohn, C.H.;Son, D.H.;Baik, S.M.;Park, C.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.47-51
    • /
    • 2011
  • Dark Mura phenomena which can happen at the region with high temperature gradient in a Notebook LCD Monitor using LED light source has numerically been studied. The calculation was conducted under the nearly realistic conditions by considering the anisotropic thermal properties of materials and the real dimensions of each component. The two performance indices of LED monitor, i.e., the maximum temperature and the spacial gradient of temperature were examined for the various shapes, lengths and thickness of heat sink plate. Calculated results give more reasonable temperature distribution comparing with experimental results.

Intelligent computer modeling of large amplitude behavior of FG inhomogeneous nanotubes

  • Wu, Xiongwei;Fang, Ting
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.617-627
    • /
    • 2022
  • In the current study, the nonlinear impact of the Von-Kármán theory on the vibrational response of nonhomogeneous structures of functionally graded (FG) nano-scale tubes is investigated according to the nonlocal theory of strain gradient theory as well as high-order Reddy beam theory. The inhomogeneous distributions of temperature-dependent material consist of ceramic and metal phases in the radial direction of the tube structure, in which the thermal stresses are applied due to the temperature change in the thickness of the pipe structure. The general motion equations are derived based on the Hamilton principle, and eventually, the acquired equations are solved and modeled by the Meshless approach as well as a computer simulation via intelligent mathematical methodology. The attained results are helpful to dissect the stability of the MEMS and NEMS.

Investigation of Slab Thickness Influence on Prestressing Design of Post-Tensioned Concrete Pavement (포스트텐션 콘크리트 포장 긴장 설계에 대한 슬래브 두께의 영향 분석)

  • Yun, Dong-Ju;Kim, Seong-Min;Bae, Jong-Oh
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.107-115
    • /
    • 2009
  • This study was conducted to investigate the effect of the slab thickness on the tensioning design and to determine the optimal slab thickness of the post-tensioned concrete pavement (PTCP). The tensile stresses due to the vehicle and environmental loads were obtained using a finite element analysis model and the tensioning stress was calculated employing an allowable flexural strength. The environmental loads of both the constant temperature gradient and the constant temperature difference between top and bottom of the slab were considered. The tensioning designs for various slab thicknesses were performed considering prestressing losses. The comparison results showed that generally as the thickness increased, the number of tendons became larger. Consequently, the design was not economical for a thicker slab thickness. Even though the number of tendons became smaller with an increase in the thickness under the small environmental load, a thicker PTCP slab was not economical because of a higher cost of concrete than that of steel. Therefore, the slab thickness should be kept in minimum within the construction available thicknesses.

  • PDF

Dynamic Response of Jointed Concrete Pavement in Test Road Due to Temperature Gradient (온도구배에 의한 시험도로 줄눈콘크리트 포장의 동적응답)

  • Yoo Tae-Seok;Jeong Jin-Hoon;Han Seung-Hwan;Sim Jong-Sung
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.25-32
    • /
    • 2006
  • Behavior of concrete pavement due to temperature gradient was investigated for 48 hours at test road using Falling Weight Deflectometer. The deflections at slab center changed similarly to those of ambient temperature and temperature gradients in the slab. And rapid variations in the deflections were observed between 8 to 12 in the morning. However, dynamic modulus of subgrade reaction and joint deflections showed reverse trends to the ambient temperature and temperature gradients. The dynamic modulus of subgrade reaction was significantly affected by temperature gradient when its value got higher. Backcalculated elastic moduli were obtained using AREA method and Method of Equivalent Thickness. The trends of the backcalculated elastic modulus were similar to those of dynamic modulus of subgrade reaction. Measured load transfer efficiencies showed maximum peak in the morning due to dowel locking. However, additional effort is necessary to verify the result.

  • PDF

Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates

  • Esmaeilzadeh, Mostafa;Golmakani, Mohammad Esmaeil;Kadkhodayan, Mehran;Amoozgar, Mohammadreza;Bodaghi, Mahdi
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.151-163
    • /
    • 2021
  • The main target of this study is to investigate nonlinear transient responses of moving polymer nano-size plates fortified by means of Graphene Platelets (GPLs) and resting on a Winkler-Pasternak foundation under a transverse pressure force and a temperature variation. Two graphene spreading forms dispersed through the plate thickness are studied, and the Halpin-Tsai micro-mechanics model is used to obtain the effective Young's modulus. Furthermore, the rule of mixture is employed to calculate the effective mass density and Poisson's ratio. In accordance with the first order shear deformation and von Karman theory for nonlinear systems, the kinematic equations are derived, and then nonlocal strain gradient scheme is used to reflect the effects of nonlocal and strain gradient parameters on small-size objects. Afterwards, a combined approach, kinetic dynamic relaxation method accompanied by Newmark technique, is hired for solving the time-varying equation sets, and Fortran program is developed to generate the numerical results. The accuracy of the current model is verified by comparative studies with available results in the literature. Finally, a parametric study is carried out to explore the effects of GPL's weight fractions and dispersion patterns, edge conditions, softening and hardening factors, the temperature change, the velocity of moving nanoplate and elastic foundation stiffness on the dynamic response of the structure. The result illustrates that the effects of nonlocality and strain gradient parameters are more remarkable in the higher magnitudes of the nanoplate speed.

The Friction Coefficients and the Nusselt Number from an Educational Point of View (교육적 측면에서의 마찰계수와 누셀트 수)

  • Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.9-13
    • /
    • 2001
  • In the present study, the friction coefficients (Fanning and Moody coefficients) and the Nusselt number is reviewed from an educational point of view. It is discussed that these dimensionless numbers can be treated with two lengh scales. Also, the similarity between the momentum and heat transfer is discussed based on the length scales.

  • PDF

Optimal Design of Structural Componets with Thickness and Shape Variatins (두께와 모양 변화를 통한 구조물의 최적설계)

  • 유영민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.119-126
    • /
    • 1985
  • 형상은 3차원이지만 2차원 문제로 이상화하여 해석할 수 있는 탄성구조물의 최적설계를 내연기관 연결봉(Connecting Rod)을 예제로 사용하여 진행하였다. 연결봉은 각 부위에서의 두께는 다르나 평면응력상태에 있다고 가정하였다. 연결봉의 질량을 최소화하기 위해 두께의 분포 및 2차원 모델 경계의 모양을 설계변수로 채택하였고 설계변수 및 응력치에 대한 제한조건을 적용하였다. 설계감도계수 계산을 위해 Variational Formulation, Material Derivative, Adjoint Variable이론을 도입하였고 최적화 방법으로는 Gradient Projection Method를 사용하였다. 최적설계 결과 현재 사용중인 연결봉 무게의 20%를 줄일 수 있음이 밝혀졌다.

Thermoelectric Imaging of Epitaxial Graphene

  • Jo, Sang-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.113.2-113.2
    • /
    • 2014
  • Heat is a familiar form of energy transported from a hot side to a colder side of an object, but not a notion associated with microscopic measurements of electronic properties. A temperature difference within a material causes charge carriers, electrons or holes, to diffuse along the temperature gradient inducing a thermoelectric voltage. Here we show that local thermoelectric measurements can yield high sensitivity imaging of structural disorder on the atomic and nanometre scales. Using this imaging technique, we discovered a defect-mediated dimensional evolution of strain-response patterns in epitaxial graphene with increasing thickness.

  • PDF