• Title/Summary/Keyword: Gradient Feature

Search Result 280, Processing Time 0.027 seconds

A Study on Real-time Tracking Method of Horizontal Face Position for Optimal 3D T-DMB Content Service (지상파 DMB 단말에서의 3D 컨텐츠 최적 서비스를 위한 경계 정보 기반 실시간 얼굴 수평 위치 추적 방법에 관한 연구)

  • Kang, Seong-Goo;Lee, Sang-Seop;Yi, June-Ho;Kim, Jung-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.88-95
    • /
    • 2011
  • An embedded mobile device mostly has lower computation power than a general purpose computer because of its relatively lower system specifications. Consequently, conventional face tracking and face detection methods, requiring complex algorithms for higher recognition rates, are unsuitable in a mobile environment aiming for real time detection. On the other hand, by applying a real-time tracking and detecting algorithm, we would be able to provide a two-way interactive multimedia service between an user and a mobile device thus providing a far better quality of service in comparison to a one-way service. Therefore it is necessary to develop a real-time face and eye tracking technique optimized to a mobile environment. For this reason, in this paper, we proposes a method of tracking horizontal face position of a user on a T-DMB device for enhancing the quality of 3D DMB content. The proposed method uses the orientation of edges to estimate the left and right boundary of the face, and by the color edge information, the horizontal position and size of face is determined finally to decide the horizontal face. The sobel gradient vector is projected vertically and candidates of face boundaries are selected, and we proposed a smoothing method and a peak-detection method for the precise decision. Because general face detection algorithms use multi-scale feature vectors, the detection time is too long on a mobile environment. However the proposed algorithm which uses the single-scale detection method can detect the face more faster than conventional face detection methods.

Recognition of Partially Occluded Binary Objects using Elastic Deformation Energy Measure (탄성변형에너지 측도를 이용한 부분적으로 가려진 이진 객체의 인식)

  • Moon, Young-In;Koo, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.63-70
    • /
    • 2014
  • Process of recognizing objects in binary images consists of image segmentation and pattern matching. If binary objects in the image are assumed to be separated, global features such as area, length of perimeter, or the ratio of the two can be used to recognize the objects in the image. However, if such an assumption is not valid, the global features can not be used but local features such as points or line segments should be used to recognize the objects. In this paper points with large curvature along the perimeter are chosen to be the feature points, and pairs of points selected from them are used as local features. Similarity of two local features are defined using elastic deformation energy for making the lengths and angles between gradient vectors at the end points same. Neighbour support value is defined and used for robust recognition of partially occluded binary objects. An experiment on Kimia-25 data showed that the proposed algorithm runs 4.5 times faster than the maximum clique algorithm with same recognition rate.

Qualitative Equity of Neighborhood Parks in Daegu According to Socioeconomic Status (사회경제적 지위에 따른 대구시 근린공원 질적 가치 형평성)

  • Jung, Mijeong;Jung, Taeyeol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.2
    • /
    • pp.45-55
    • /
    • 2020
  • In terms of environmental justice, urban parks play a pivotal role in imperative amenities allowing for physical activity. The reasonable distribution of urban park services must be considered in terms of community demand and the context of the park. The purpose of this study is to analyze the inequity of qualitative park service according to the socioeconomic status(SES) in Daegu. The qualitative service was assessed for 82 neighborhood and walking-distance parks by utilizing the NGST(Neighborhood Green Space Tool). The inequity was analyzed by SES variables(ratio of basic living recipients, ratio of single-parent families, average housing sales, dilapidated dwelling ratio, and park area per capita). The features of the qualitative equity in Daegu is as follows. First, urban park planning in Daegu is in parallel with the development of residential areas rather than the local policy. The development pattern of parks stretching from center of the city to outskirts clearly dissociates the city based on socioeconomic status. The parks in the center are relatively old and poorly managed. Second, overall neighborhood parks lacked recreational facilities. The facilities are significantly influenced by the housing values around them. The lower the recreation facility score, the higher the floor gradient of the urban parks constraining physical activities. Third, the quantitative supply of parks has nothing to do with the quality of the urban parks. Green space distribution is highly dependent on natural park areas, so the park area per capita cannot be a standard for assessing qualitative equity.

A Study on Separation Control by Local Suction in Front of a Hemisphere in Laminar Flow (층류경계층 내 반구 전방의 국부적인 흡입에 의한 표면 박리 제어)

  • Kang, Yong-Duck;An, Nam-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.92-100
    • /
    • 2018
  • Vortical systems are considered a main feature to sustain turbulence in a boundary layer through interaction. Such turbulent structures result in frictional drag and erosion or vibration in engineering applications. Research for controlling turbulent flow has been actively carried out, but in order to show the effect of vortices in a turbulent boundary layer, it is necessary to clarify the mechanism by which turbulent energy is transferred. For this purpose, it is convenient to demonstrate and capture phenomena in a laminar boundary layer. Therefore, in this study, the interactions of disturbed flow around a hemisphere on a flat plate in laminar flow were analyzed. In other words, a street of hairpin vortices was generated following a wake region formed after flow separation occurred over a hemisphere. Necklace vortices surrounding the hemisphere also appeared due to a strong adverse pressure gradient that brought high momentum fluid into the wake region thereby leading to an increase in the frequency of hairpin vortices. To mitigate the effect of these necklace vortices, local suction control was applied through a hole in front of the hemisphere. Flow visualization was recorded to qualitatively determine flow modifications, and hot-film measurements quantitatively supported conclusions on how much the power of the hairpin vortices was reduced by local wall suction.

Analysis of Important Indicators of TCB Using GBM (일반화가속모형을 이용한 기술신용평가 주요 지표 분석)

  • Jeon, Woo-Jeong(Michael);Seo, Young-Wook
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.4
    • /
    • pp.159-173
    • /
    • 2017
  • In order to provide technical financial support to small and medium-sized venture companies based on technology, the government implemented the TCB evaluation, which is a kind of technology rating evaluation, from the Kibo and a qualified private TCB. In this paper, we briefly review the current state of TCB evaluation and available indicators related to technology evaluation accumulated in the Korea Credit Information Services (TDB), and then use indicators that have a significant effect on the technology rating score. Multiple regression techniques will be explored. And the relative importance and classification accuracy of the indicators were calculated by applying the key indicators as independent features applied to the generalized boosting model, which is a representative machine learning classifier, as the class influence and the fitness of each model. As a result of the analysis, it was analyzed that the relative importance between the two models was not significantly different. However, GBM model had more weight on the InnoBiz certification, R&D department, patent registration and venture confirmation indicators than regression model.

The Formation and Geomorphic Development of Chon-hwang-san(Mt.) Talus (천황산 Talus의 형성과 지형발달)

  • Jeon, Young-Gweon
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.2
    • /
    • pp.173-182
    • /
    • 1996
  • The intent of this paper is to examine the talus in Chon-hwang-san in the southern part of Korean Peninsula, and then analyze its geomorphic feature and origin. The research is summarized as follows; (1) The talus is 220m long and the range of the width from 10 to 75m. The mean gradient is $33^{\circ}$ and the mean block size is $110{\times}59cm$(long axis$\times$short axis). The overall appearance of the talus is tongue-shaped and the geology of the constituent blocks is dacite. (2) This talus has two particular geomorphic landscapes. One is that the talus has not free face as source of blocks back of itself; the free face of the talus has been parallel retreated to disappearance by frost attack. The other is that the upper part of the talus is on the ridge. (3) This talus is classified into rock fall talus type, and the shape of rock fragments is angular. When considered in conjunction with face of being mentioned above, the morphology and lithology of the talus are best explained on the basis of origin under periglacial environment during late pleistocene time. (4) Most constituent rock debris are now lichen-covered, or covered with a mantle of weathering. There is no evidence of appreciable movement and for supplying block. Therefore, the talus appears to be relict or fossil form stage, currently.

  • PDF

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.

A Study for Drying of Sewage Sludge through Immersion Frying Using Used Oil (폐유를 이용한 하수슬러지 유중 건조 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Hong, Ji-Eun;Jang, Dong-Soon;Ohm, Tae-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.694-699
    • /
    • 2008
  • Considering the severe regulation associated with sludge treatment such as direct landfill and ocean dumping, there is no doubt in that an advanced study for the proper treatment of sludge is urgently needed in near feature. As one of viable method for sludge treatment, fry-drying of sludge by waste oil has been investigated in this study. The fundamental mechanism of this drying method lies in the phenomenon of rapid moisture escape in the sludge pore toward oil media. This is caused by the severe pressure gradient formed by the rapid oil heating between sludge and oil. As part of research effort of fry-drying using waste oil, a series of basic study has been made experimentally to obtain typical drying curves as function of important parameters such as drying temperature, drying time, oil type and geometrical shape of sludge formed. Based on this study, a number of useful conclusion can be drawn as following. The fry-drying method by oil immersion was found quite effective in the removal efficiency of sludge moisture, in general, the moisture content decreases significantly after 10 minutes and the whole moisture content was less than 5% after 14 minutes regardless of the drying temperature. The increase of oil temperature up to 140$^{\circ}C$ favors significantly for the removal of moisture but there was no visible difference above 140$^{\circ}C$. As expected, the decrease of diameter in sludge was efficient in drying due to the increased surface area per unit volume. Further, the effect of oil property by the change of oil type was noted. To be specific, for the case of engine oil the efficiency was found to be remarkably delayed in moisture evaporation compared with that of vegetable oil due to the increased viscosity of engine oil. It produced a result of increasing the evaporation of moisture largely relatively high in the drying temperature over 140$^{\circ}C$ compared with the drying temperature 120$^{\circ}C$ drying temperature as the drying time passed. Accordingly, the drying temperature is considered desirable as keeping over 140$^{\circ}C$ regardless of a sort of used oil.

Estimation of $T_2{^*}$ Relaxation Times for the Glandular Tissue and Fat of Breast at 3T MRI System (3테슬러 자기공명영상기기에서 유방의 유선조직과 지방조직의 $T_2{^*}$이완시간 측정)

  • Ryu, Jung Kyu;Oh, Jang-Hoon;Kim, Hyug-Gi;Rhee, Sun Jung;Seo, Mirinae;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Purpose : $T_2{^*}$ relaxation time which includes susceptibility information represents unique feature of tissue. The objective of this study was to investigate $T_2{^*}$ relaxation times of the normal glandular tissue and fat of breast using a 3T MRI system. Materials and Methods: Seven-echo MR Images were acquired from 52 female subjects (age $49{\pm}12 $years; range, 25 to 75) using a three-dimensional (3D) gradient-echo sequence. Echo times were between 2.28 ms to 25.72 ms in 3.91 ms steps. Voxel-based $T_2{^*}$ relaxation times and $R_2{^*}$ relaxation rate maps were calculated by using the linear curve fitting for each subject. The 3D regions-of-interest (ROI) of the normal glandular tissue and fat were drawn on the longest echo-time image to obtain $T_2{^*}$ and $R_2{^*}$ values. Mean values of those parameters were calculated over all subjects. Results: The 3D ROI sizes were $4818{\pm}4679$ voxels and $1455{\pm}785$ voxels for the normal glandular tissue and fat, respectively. The mean $T_2{^*}$ values were $22.40{\pm}5.61ms$ and $36.36{\pm}8.77ms$ for normal glandular tissue and fat, respectively. The mean $R_2{^*}$ values were $0.0524{\pm}0.0134/ms$ and $0.0297{\pm}0.0069/ms$ for the normal glandular tissue and fat, respectively. Conclusion: $T_2{^*}$ and $R_2{^*}$ values were measured from human breast tissues. $T_2{^*}$ of the normal glandular tissue was shorter than that of fat. Measurement of $T_2{^*}$ relaxation time could be important to understand susceptibility effects in the breast cancer and the normal tissue.

Experimental and Numerical Study on the Effect of the Rain Infiltration with the Increase of Surface Temperature (지표면 온도상승이 빗물의 토양침투에 미치는 영향에 대한 실험 및 수치 해석적 연구)

  • Shin, Nara;Shin, Mi Soo;Jang, Dong Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.422-429
    • /
    • 2013
  • It is generally known that the increase of the Earth surface temperature due to the global warming together with the land desertification by rapid urban development has caused severe climate and weather change. In desert or desertification land, it is observed that there are always severe flooding phenomena, even if desert sand has the high porosity, which could be believed as the favorable condition of rain water infiltration into ground water. The high runoff feature causes possibly another heavy rain by quick evaporation with the depletion of underground water due to the lack of infiltration. The basic physics of desert flooding is reasonably assumed due to the thermal buoyancy of the higher temperature of the soil temperature than that of the rain drop. Considering the importance of this topic associated with water resource management and climate disaster prevention, no systematic investigation has, however, been reported in literature. In this study, therefore, a laboratory scale experiment together with the effort of numerical calculation have been performed to evaluate quantitatively the basic hypothesis of run-off mechanism caused by the increase of soil temperature. To this end, first, of all, a series of experiment has been made repeatedly with the change of soil temperature with well-sorted coarse sand having porosity of 35% and particle diameter, 2.0 mm. In specific, in case 1, the ground surface temperature was kept at $15^{\circ}C$, while in case 2 that was high enough at $70^{\circ}C$. The temperature of $70^{\circ}C$ was tested as this try since the informal measured surface temperature of black sand in California's Coachella Valley up to at 191 deg. $^{\circ}F$ ($88^{\circ}C$). Based on the experimental study, it is observed that the amount of runoff at $70^{\circ}C$ was higher more than 5% compared to that at $15^{\circ}C$. Further, the relative amount of infiltration by the decrease of the surface temperature from 70 to $15^{\circ}C$ is about more than 30%. The result of numerical calculation performed was well agreed with the experimental data, that is, the increase of runoff in calculation as 4.6%. Doing this successfully, a basic but important research could be made in the near future for the more complex and advanced topic for this topic.