• 제목/요약/키워드: Gradient Diffusion Model

검색결과 71건 처리시간 0.028초

사행 유로를 갖는 고분자 전해질 연료전지의 기체확산층 내부에서의 우회 유동 예측 (Prediction of Bypass Flow Rate through Gas Diffusion Layer in PEMFC with Serpentine Flow Channels)

  • 전세계;김경연
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.293-299
    • /
    • 2012
  • The serpentine flow channel is widely used in polymer electrolyte membrane fuel cells (PEMFCs) to prevent flooding phenomena because it effectively removes liquid water in the flow channel. The pressure drop between inlet and outlet increases as compared with straight channels due to minor losses associated with the corners of the turning configurations. This results in a strong pressure gradient between adjacent channels in specific regions, where some amount of reactant gas can be delivered to catalyst layers by convection through a gas diffusion layer (GDL). The enhancement of the convective flow in the GDL, so-called bypass flow, affects fuel cell performance since the bypass flow influences the reactant transport and thus its concentration over the active area. In the present paper, for the bipolar plate design, a simple analytic model has been proposed to predict the bypass flow in the serpentine type flow channels and validated with three-dimensional numerical simulation results.

열교환기 휜에서의 착상 거동 (Behavior of frost formed on heat exchanger fins)

  • 김정수;이관수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2334-2339
    • /
    • 2008
  • This paper proposes an improved mathematical model for predicting the frosting behavior on a two-dimensional fin considering the heat conduction of heat exchanger fins under frosting conditions. The model consists of laminar flow equation in airflow, diffusion equation of water vapor for frost layer, and heat conduction equation in fin, and these are coupled together. In this model, the change in three-dimensional airside airflow caused by frost growth is accounted for. The fin surface temperature increased toward the fin tip due to the fin heat conduction. On the contrary, the temperature gradient in the airflow direction(x-dir.) is small throughout the entire fin. The frost thickness in the direction perpendicular to airflow, i.e. z-dir., decreases exponentially toward the fin tip due to non-uniform temperature distribution. The rate of decrease of heat transfer in the airflow direction is high compared to that in the z-direction due to more decrease in the sensible and latent heat rate in x-direction.

  • PDF

복부대동맥의 3차원 표면모델링을 위한 가변형 능동모델의 적용 (Surface Rendering in Abdominal Aortic Aneurysm by Deformable Model)

  • 최석윤;김창수
    • 한국콘텐츠학회논문지
    • /
    • 제9권6호
    • /
    • pp.266-274
    • /
    • 2009
  • 복부대동맥류는 주로 65-75세의 중년이후 남성과 흡연자에서 주로 발생한다. 가장 중요한 증세는 대동맥 파열로서 생명에 치명적이며, 혈관벽이 헐고 약해지고 파열되어 많은 양의 혈액이 복강 내로 쏟아지는 것을 의미한다. 복부대동맥박리를 치료하기 위해서는 3차원 영상 정보가 필요하고, 수술시 임상의사에게 많은 도움이 된다. 3차원 정보는 MDCT로부터 계산되고 3차원 모델은 2차원 CT영상의 분할로 계산된 좌표로부터 재구성된다. 따라서 3차원 영상의 질은 2차원 영상의 분할알고리듬에 의존적이다. 본 연구에서는 목적장기만을 모델링하기 위해서 가변형 능동모델을 제안한다. 가변형 능동모델은 외부힘에 의해서 에너지가 최소화되는 수렴하는 모델이다. 외부힘은 GVF로 불리며, 그레이레벨 또는 영상으로 부터의 이 진경계지도의 구배가 확산되는 것을 계산한다. 실험결과 복부대동맥박리에 적용해서 3차원 표면재구성을 성공했으며, 분할알고리듬의 특성으로 시각적 및 정량적인 평가도 성공했다.

사각 건물 주위의 오염물 확산에 대한 수치해석적 연구 (Simulations of Pollutant Dispersion over Rectangular Building)

  • 홍보영;박찬국
    • 한국전산유체공학회지
    • /
    • 제6권4호
    • /
    • pp.1-7
    • /
    • 2001
  • Wind flow perturbations, recirculations and turbulence generated by buildings often dominate air pollutant distributions around buildings. This paper describes dispersion of contaminants in the vicinity of a building by solving the concentration equation based on previously simulated wind flow field. Turbulence closure is achieved by using the standard k-ε two-equation model. The paper shows application of the CIP method for solving a species concentration equation of contaminant gas around a rectangular building for two different sources under conditions of neutral atmospheric stratification. Results have been compared to the experimental data and the previous numerical results by hybrid scheme. The computational results of concentration profiles by the CIP method agree well with experimental data.

  • PDF

CIP 방법을 이용한 건물 주위의 오염물 확산에 대한 수치해석 (Numerical Simulations of Using CIP Method for Dispersion of Pollutants around a Building)

  • 홍보영;박찬국
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.723-728
    • /
    • 2001
  • Wind flow perturbations, recirculations and turbulence generated by buildings often dominate air pollutant distributions around buildings. This paper describes dispersion of contaminants in the vicinity of a building by solving the concentration equation based on previously simulated wind flow field. Turbulence closure is achieved by using the standard k-e two-equation model. The paper shows application of the CIP method for solving a species concentration equation of contaminant gas around a rectangular building for two different sources under conditions of neutral atmospheric stratification. Results have been compared to the experimental data and the previous numerical results by hybrid scheme. The computational results of concentration profiles by the CIP method agree well with experimental data.

  • PDF

Numerical Simulation of Buoyant flume Dispersion in a Stratified Atmosphere Using a Lagrangian Stochastic Model

  • Kim, Hyun-Goo;Noh, Yoo-Jeong;Lee, Choung-Mook;Park, Don-Bum
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.440-448
    • /
    • 2003
  • In the present paper, numerical simulations of buoyant plume dispersion in a neutral and stable atmospheric boundary layer have been carride out. A Lagrangian Stochastic Model (LSM) with a Non-Linear Eddy Viscosity Model (NLEVM) for turbulence is used to generate a Reynolds stress field as an input condition of dispersion simulation. A modified plume-rise equation is included in dispersion simulation in order to consider momentum effect in an initial stage of plume rise resulting in an improved prediction by comparing with the experimental data. The LSM is validated by comparing with the prediction of an Eulerian Dispersion Model (EDM) and by the measured results of vertical profiles of mean concentration in the downstream of an elevated source in an atmospheric boundary layer. The LSM predicts accurate results especially in the vicinity of the source where the EDM underestimates the peak concentration by 40% due to inherent limitations of gradient diffusion theory. As a verification study, the LSM simulation of buoyant plume dispersions under a neutral and stable atmospheric condition is compared with a wind-tunnel experiment, which shows good qualitative agreements.

Elliptic Blending Model을 사용하여 자연대류 해석 시 난류열유속 처리법 비교 (COMPARISON OF THE TREATMENTS OF TURBULENT HEAT FLUX FOR NATURAL CONVECTION WITH THE ELLIPTIC-BLENDING SECOND-MOMENT CLOSURE)

  • 최석기;김성오
    • 한국전산유체공학회지
    • /
    • 제12권2호
    • /
    • pp.26-31
    • /
    • 2007
  • A comparative study on the treatment of the turbulent heat flux with the elliptic blending second-moment closure for a natural convection flow is performed. Three cases of different treating the turbulent heat flux are considered. Those are the generalized gradient diffusion hypothesis (GGDH), the algebraic flux model (AFM) and the differential flux model (DFM). The constants in the models are adjusted with a primary emphasis placed on the accuracy of predicting the local Nusselt number. These models are implemented in a computer code specially designed for evaluation of turbulent models. Calculations are performed for a turbulent natural convection in the 1:5 rectangular cavity and the calculated results are compared with the available experimental data. The results show that the three models produce nearly the same accuracy of solutions. These results show that the GGDH, AFM and DFM models for treating the turbulent heat flux are sufficient for this simple shear flow where the shear production is dominant. It is observed that, in the weakly stratified region at the center zone of the cavity, the vertical velocity fluctuation is nearly zero in the GGDH solutions, which shows that the GGDH model may not be suitable for the strongly stratified flow. Thus, further study on the strongly stratified flow should be followed.

고압하에서 수소 확산화염의 소염에 미치는 복사 열손실 효과에 관한 수치적 연구 (A Numerical Study on Effect of Radiative Heat Loss on Extinction of Hydrogen Diffusion Flames at High Pressure)

  • 오태균;손채훈
    • 대한기계학회논문집B
    • /
    • 제32권5호
    • /
    • pp.351-358
    • /
    • 2008
  • Extinction characteristics of hydrogen-air diffusion flames at various pressures are investigated numerically by adopting counterflow flame configuration as a model flamelet. Especially, effect of radiative heat loss on flame extinction is emphasized. Only gas-phase radiation is considered here and it is assumed that $H_2O$ is the only radiating species. Radiation term depends on flame thickness, temperature, $H_2O$ concentration, and pressure. From the calculated flame structures at various pressures, flame thickness decreases with pressure, but its gradient decreases at high pressure. Flame temperature and mole fraction of $H_2O$ increase slightly with pressure. Accordingly, as pressure increases, radiative heat loss becomes dominant. When radiative heat loss is considered, radiation-induced extinction is observed at low strain rate in addition to transport-induced extinction. As pressure increases, flammable region, where flame is sustained, shifts to the high-temperature region and then, shrunk to the point on the coordinate plane of flame temperature and strain rate. The present numerical results show that radiative heat loss can reduce the operating range of a combustor significantly.

사각채널 내 주기적으로 배열된 반원 리브 영향의 유동해석 (Analysis of the turbulent flow on the periodically arranged semi-circular ribs in a rectangular channel)

  • 이경환;나인;최순호;정효민;정한식
    • 동력기계공학회지
    • /
    • 제15권2호
    • /
    • pp.31-36
    • /
    • 2011
  • The flow characteristics on the periodically arranged semi-circular ribs in a rectangular channel for turbulent flow have been investigated numerically. The aspect ratio of the rectangular channel was AR=5, the rib height to hydraulic diameter ratio was 0.07 and rib height to channel height ratio was e/H=0.117. The v2-f turbulence model and SST k-${\omega}$ turbulence model were used to find the flow characteristics of near the wall which are suited for realistic phenomena. The numerical analysis results show turbulent flow characteristics and pressure drop at the near the wall as observed experimentally. The results predict that turbulent kinetic energy(k) is closely relative to the diffusion of recirculation flow, and v2-f turbulence model simulation results have a good agreement with experimental.

밝기 정보와 곡선전개 기반의 활성 모델 (Intensity Information and Curve Evolution Based Active Contour Model)

  • 김성곤
    • 정보처리학회논문지B
    • /
    • 제10B권5호
    • /
    • pp.521-526
    • /
    • 2003
  • 본 논문에서는 영역의 경계를 추출하기 위해 영상의 밝기 정보와 곡선전개 방식을 이용한 기하 활성 모델을 제안한다. 영역의 경계를 추출하는 문제를 추출한 영역의 평균 밝기 값과 전개중인 폐곡선 영역의 밝기 값의 차론 최소화시키는 것으로 설정한다. 최적의 해를 구하는 방법으로 레벨세트 이론을 적용한 곡선전개 방법을 이용한다. 이 방식은 일반적인 활성 모델에 비해 초기 곡선 설정에 제약이 없고 동시에 여러 영역의 경계 추출이 가능하다. 제안 모델은 에지 정보가 충분치 못한 영상의 경우에도 일반적인 에지 기반 방식에 비해 추출 결과가 양호하였다. 비등방성 확산 필터를 사용하여 영상을 전처리 함으로써 보다 나은 추출이 수행되었다. CT나 MRI 영상을 이용하여 모델의 성능을 확인하였다.