앞으로의 시대는 인공지능을 이용한 다양한 분야에 다양한 제품이2 생성될 것이다. 이러한 시대에 인공지능의 학습 방법의 동작 원리를 알고 이를 정확하게 활용하는 것은 상당히 중요한 문제이다. 이 논문은 지금까지 알려진 인공지능 학습 방법을 소개한다. 인공지능의 학습은 수학의 고정점 반복 방법(fixed point iteration method)을 기반으로 하고 있다. 이 방법을 기반으로 수렴 속도를 조절한 GD(Gradient Descent) 방법, 그리고 쌓여가는 양을 누적하는 Momentum 방법, 마지막으로 이러한 방법을 적절히 혼합한 Adam(Adaptive Moment Estimation) 방법 등이 있다. 이 논문에서는 각 방법의 장단점을 설명한다. 특히, Adam 방법은 조정 능력을 포함하고 있어 기계학습의 강도를 조정할 수 있다. 그리고 이러한 방법들이 디지털 신호에 어떠한 영향을 미치는 지에 대하여 분석한다. 이러한 디지털 신호의 학습과정에서의 변화는 앞으로 인공지능을 이용한 작업 및 연구를 수행함에 있어 정확한 활용과 정확한 판단의 기준이 될 것이다.
이동로봇은 유연한 생산시스템이 필요한 산업현장에서 유용하게 사용된다. 이동로봇이 생산부품과 같은 기계적 부하를 싣고 정해진 경로를 따라 정확히 이동하여야 하며 통상 기구학적 제어기가 사용되고 있다. 그러나 부하가 매우 크고 비선형 마찰도 클 경우, 기구학적 제어기로 만족할 만한 제어성능을 기대할 수 없어서 동적 제어기가 연구되고 있다. 기존의 동적 제어기는 부하의 무게와 위치를 정확히 알아야 한다는 조건이 있다. 그러나 실제 기계적 부하는 빈번히 변하고 정확히 알 수 없으므로 기존의 동적제어기 성능에 한계가 있다. 따라서 기계적 부하를 정확히 알지 못해도 이동로봇의 동적제어가 작동하도록 경사감소학습을 이용하여 적응 PD 제어 방법을 본 논문에서 제안하였다. 여러 가지 부하 변동 조건하에서 다양하게 시뮬레이션 하여 본 논문의 적응 PD 제어 방법이 기존의 방법보다 폭넓은 수렴영역을 가지고 있음을 확인하였다.
Z. cao는 Relation matrix를 사용한 정밀한 추론이 가능한 NFRM(New fuzzy reasoning method)을 제안하였다. 이는 추론의 규칙 수가 적음에도 불구하고 Mamdani의 퍼지 추론방식에 비하여 좋은 성능을 보였다. 그러나 대부분의 퍼지스템의 경우, MIMO 시스템에 적용 시 퍼지 추론규칙을 도출해 내기 힘들고 많은 규칙의 수가 요구되는 단점을 갖는다. 그러므로 본 연구자에 의하여 과거에 Z. Cao's의 퍼지 추론방법을 MIMO 시스템으로 확장된 MIMO 퍼지추론 방식이 제안되었다. 그러나 정밀한 추론을 위하여 relation matrix는 휴리 스틱 (heuristic)한 방법이나 시행착오법을 사용하여 구하였고, 이는 많은 시간과 노력이 필요하다. 본 연구에서는 이러한 relation matrix를 구하기 위하여 시행 착오법에 의해 소요되는 많은 시간과 노력을 줄이고, 더욱 정밀한 추론 성능의 개선을 위하여 경사감소학습법을 사용한 학습기 능을 갖는 MIMO 퍼지추론 방식을 제안하고자 한다. 모의실험은 2축 로봇의 역기구학 문제를 푸는데 적용하여 제안된 추론방식이 좋은 성능을 보였다.
기울기를 따라가는 방식(gradient descent method)에 바탕을 둔 오류 역전파(EBP : Error Back Propagation) 방법이 가장 널리 사용되는 신경회로망의 학습 방법에서 문제가 되는 지역 최소값(local minima), 느린 학습 시간, 신경망 구조(structure), 그리고 초기의 연결 강도(interconnection weight) 등을 기존의 다층 신경 회로망에 지역적인 학습 능력을 가진 가우시안 포텔샵 네트워크(GPFN : Gaussian Potential Function Networks)를 병렬적으로 부가하여 해결함으로써 지역화된 오류 학습 패턴들이 나타내는 문제에 대하여 학습 성능을 향상시킬 수 잇는 새로운 학습 방법을 제시한다. 함수 근사화 문제에서 기존의 EBP 학습 방법과의 비교 실험으로 제안된 학습 방법이 보다 개선된 일반화 능력과 빠른 학습 속도를 가짐을 보여 그 효율성을 입증한다.
심층 신경망(Deep Neural Network, DNN) 모델을 대량의 학습 데이터로 학습시키기 위해서는 많은 시간이 소요되기 때문에 병렬 학습 방법이 필요하다. DNN의 학습에는 일반적으로 Stochastic Gradient Descent(SGD) 방법이 사용되는데, SGD는 근본적으로 순차적인 처리가 필요하므로 병렬화하기 위해서는 다양한 근사(approximation) 방법을 적용하게 된다. 본 논문에서는 기존의 DNN 병렬 학습 알고리즘들을 소개하고 연산량, 통신량, 근사 방법 등을 분석한다.
This paper proposes an efficient fault diagnosis for digital circuits using multilayer neural networks. The efficient learning algorithm is also proposed for the multilayer neural network, which is combined the steepest descent for high-speed optimization and the dynamic tunneling for global optimization. The fault-diagnosis system using the multilayer neural network of the proposed algorithm has been applied to the parity generator circuit. The simulation results shows that the proposed system is higher convergence speed and rate, in comparision with system using the backpropagation algorithm based on the gradient descent.
과거 Z. cao는 Relation matrix를 사용한 정밀한 추론이 가능한 NFRM(New fuzzy reasoning method)을 제안하였다. 이는 추론의 규칙 수가 적음에도 불구하고 Mamdani의 퍼지추론방식에 비하여 좋은 성능을 보였다. 그러나 정밀한 추론을 위하여 relation matrix는 시행착오법을 사용하여 구하고, 이는 많은 시간과 노력이 필요하다. 본 연구에서는 이러한 relation matrix를 구하기 위하여 시행착오법에 의해 소요되는 많은 시간과 노력을 줄이고, 더욱 정밀한 추론 성능의 개선을 위하여 경사감소학습법을 사유한 학습기능을 갖는 Z. Cao의 퍼지추론 방식을 제안하고자 한다.
This paper presents a design method of the wavelet neural network based controller using direct adaptive control method to deal with a stable intelligent control of chaotic systems. The various uncertainties, such as mechanical parametric variation, external disturbance, and unstructured uncertainty influence the control performance. However, the conventional control methods such as optimal control, adaptive control and robust control may not be feasible when an explicit, faithful mathematical model cannot be constructed. Therefore, an intelligent control system that is an on-line trained WNN controller based on direct adaptive control method with adaptive learning rates is proposed to control chaotic nonlinear systems whose mathematical models are not available. The adaptive learning rates are derived in the sense of discrete-type Lyapunov stability theorem, so that the convergence of the tracking error can be guaranteed in the closed-loop system. In the whole design process, the strict constrained conditions and prior knowledge of the controlled plant are not necessary due to the powerful learning ability of the proposed intelligent control system. The gradient-descent method is used for training a wavelet neural network controller of chaotic systems. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with application to the chaotic systems.
다층 신경망의 학습에 있어서 역전파 알고리즘은 시스템이 지역적 최소치에 빠질수 있고,탐색공간의 피라미터들에 의해 신경망 시스템의 성능이 크게 좌우된다는 단점이 있다.이러한 단점을 보완하기 의해 유전자 알고리즘이 신경망의 학습에 도입도었다.그러나 유전자 알고리즘에는 역전파 알고리즘과 같은 미세 조정되는 지역적 탐색(fine-tuned local search) 을 위한 메카니즘이 존재하지 않으므로 시스템이 전역적 최적해로 수렴하는데 많은 시간을 필요로 한다는 단점이 있다. 따라서 본 논문에서는 역전파 알고리즘의 기울기 강하 기법(gradient descent method)을 교배나 돌연변이와 같은 유전 연산자로 둠으로써 유전자 알고리즘에 지역적 미세 조정(local fine-tuning)을 위한 메카니즘을 제공해주는 새로운 형태의 GA-BP 방법을 제안한다.제안된 방법의 유용성을 보이기 위해 3-패러티 비트(3-parity bit) 문제에 실험하였다.
Journal of the Korean Data and Information Science Society
/
제28권5호
/
pp.1125-1132
/
2017
가뭄의 심도와 빈도가 강해지는 상황에서 가뭄예측을 위한 연구가 지속적으로 이루어지고 있으나 가뭄현상의 시간적 변동이 비선형적이며 복잡하여 단일 모형만으로 예측하기에는 한계가 있다. 이 연구에서는 기상가뭄지수인 표준강수지수 (SPI)와 세계기후지수, 날씨 관련 변수 등과 같은 다양한 설명변수들 사이의 관계를 설명할 선행 모형과 가법 모형을 먼저 구축한 후 앙상블 기법 중 확률 기울기 하강 (stochastic gradient descent; SGD) 방법을 이용하여 가중치를 설정하는 결합모형을 구축하였다. 우리나라 14개 지역에 대한 1954년 ~ 2013년 자료를 이용하여 모형을 구축하고 2014년 ~ 2015년 자료를 이용하여 모형의 성능을 비교하였다. 그 결과 14개 지역 중 8개 지역에 대하여 개별 모형에 비해 결합모형의 성능이 좋았으며 가뭄 예측이 개선되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.