• Title/Summary/Keyword: Grades

Search Result 3,362, Processing Time 0.025 seconds

Optimum Radiotherapy Schedule for Uterine Cervical Cancer based-on the Detailed Information of Dose Fractionation and Radiotherapy Technique (처방선량 및 치료기법별 치료성적 분석 결과에 기반한 자궁경부암 환자의 최적 방사선치료 스케줄)

  • Cho, Jae-Ho;Kim, Hyun-Chang;Suh, Chang-Ok;Lee, Chang-Geol;Keum, Ki-Chang;Cho, Nam-Hoon;Lee, Ik-Jae;Shim, Su-Jung;Suh, Yang-Kwon;Seong, Jinsil;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.143-156
    • /
    • 2005
  • Background: The best dose-fractionation regimen of the definitive radiotherapy for cervix cancer remains to be clearly determined. It seems to be partially attributed to the complexity of the affecting factors and the lack of detailed information on external and intra-cavitary fractionation. To find optimal practice guidelines, our experiences of the combination of external beam radiotherapy (EBRT) and high-dose-rate intracavitary brachytherapy (HDR-ICBT) were reviewed with detailed information of the various treatment parameters obtained from a large cohort of women treated homogeneously at a single institute. Materials and Methods: The subjects were 743 cervical cancer patients (Stage IB 198, IIA 77, IIB 364, IIIA 7, IIIB 89 and IVA 8) treated by radiotherapy alone, between 1990 and 1996. A total external beam radiotherapy (EBRT) dose of $23.4\~59.4$ Gy (Median 45.0) was delivered to the whole pelvis. High-dose-rate intracavitary brachytherapy (HDR-IBT) was also peformed using various fractionation schemes. A Midline block (MLB) was initiated after the delivery of $14.4\~43.2$ Gy (Median 36.0) of EBRT in 495 patients, while In the other 248 patients EBRT could not be used due to slow tumor regression or the huge initial bulk of tumor. The point A, actual bladder & rectal doses were individually assessed in all patients. The biologically effective dose (BED) to the tumor ($\alpha/\beta$=10) and late-responding tissues ($\alpha/\beta$=3) for both EBRT and HDR-ICBT were calculated. The total BED values to point A, the actual bladder and rectal reference points were the summation of the EBRT and HDR-ICBT. In addition to all the details on dose-fractionation, the other factors (i.e. the overall treatment time, physicians preference) that can affect the schedule of the definitive radiotherapy were also thoroughly analyzed. The association between MD-BED $Gy_3$ and the risk of complication was assessed using serial multiple logistic regression models. The associations between R-BED $Gy_3$ and rectal complications and between V-BED $Gy_3$ and bladder complications were assessed using multiple logistic regression models after adjustment for age, stage, tumor size and treatment duration. Serial Coxs proportional hazard regression models were used to estimate the relative risks of recurrence due to MD-BED $Gy_{10}$, and the treatment duration. Results: The overall complication rate for RTOG Grades $1\~4$ toxicities was $33.1\%$. The 5-year actuarial pelvic control rate for ail 743 patients was $83\%$. The midline cumulative BED dose, which is the sum of external midline BED and HDR-ICBT point A BED, ranged from 62.0 to 121.9 $Gy_{10}$ (median 93.0) for tumors and from 93.6 to 187.3 $Gy_3$ (median 137.6) for late responding tissues. The median cumulative values of actual rectal (R-BED $Gy_3$) and bladder Point BED (V-BED $Gy_3$) were 118.7 $Gy_3$ (range $48.8\~265.2$) and 126.1 $Gy_3$ (range: $54.9\~267.5$), respectively. MD-BED $Gy_3$ showed a good correlation with rectal (p=0.003), but not with bladder complications (p=0.095). R-BED $Gy_3$ had a very strong association (p=<0.0001), and was more predictive of rectal complications than A-BED $Gy_3$. B-BED $Gy_3$ also showed significance in the prediction of bladder complications in a trend test (p=0.0298). No statistically significant dose-response relationship for pelvic control was observed. The Sandwich and Continuous techniques, which differ according to when the ICR was inserted during the EBRT and due to the physicians preference, showed no differences in the local control and complication rates; there were also no differences in the 3 vs. 5 Gy fraction size of HDR-ICBT. Conclusion: The main reasons optimal dose-fractionation guidelines are not easily established is due to the absence of a dose-response relationship for tumor control as a result of the high-dose gradient of HDR-ICBT, individual differences In tumor responses to radiation therapy and the complexity of affecting factors. Therefore, in our opinion, there is a necessity for individualized tailored therapy, along with general guidelines, in the definitive radiation treatment for cervix cancer. This study also demonstrated the strong predictive value of actual rectal and bladder reference dosing therefore, vaginal gauze packing might be very Important. To maintain the BED dose to less than the threshold resulting in complication, early midline shielding, the HDR-ICBT total dose and fractional dose reduction should be considered.

Comparisons of Unicortical and Bicortical Lateral Mass Screws in the Cervical Spine : Safety vs Strength (경추부의 후관절 나사못 고정술에서 단피질삽입법과 양피질 삽입법 간의 특성에 관한 비교)

  • Park, Choon-Keun;Hwang, Jang-Hoe;Ji, Chul;Lee, Jae Un;Sung, Jae Hoon;Choi, Seung-Jin;Lee, Sang-Won;Seybold, Eric;Park, Sung-Chan;Cho, Kyung-Suok;Park, Chun-Kun;Kang, Joon-Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.10
    • /
    • pp.1210-1219
    • /
    • 2001
  • Introduction : The purpose of this study was to analyze the safety, pullout strength and radiographic characteristics of unicortical and bicortical screws of cervical facet within cadaveric specimens and evaluate the influence of level of training on the positioning of these screws. Methods : Twenty-one cadavers, mean 78.9 years of age, underwent bilateral placement of 3.5mm AO lateral mass screw from C3-C6(n=168) using a slight variation of the Magerl technique. Intraoperative imaging was not used. The right side(unicortical) utilized only 14mm screws(effective length of 11mm) while on the left side to determine the length of the screw after the ventral cortex had been drilled. Three spine surgeons(attending, fellow, chief resident) with varying levels of spine training performed the procedure on seven cadavers each. All spines were harvested and lateral radiographs were taken. Individual cervical vertebrae were carefully dissected and then axial radiographs were taken. The screws were evaluated clinically and radiographically for their safety. Screws were graded clinically for their safety with respect to the spinal cord, facet joint, nerve root and vertebral artery. The grades consisted of the following categories : "satisfactory", "at risk" and "direct injury". Each screw was also graded according to its zone placement. Screw position was quantified by measuring a sagittal angle from the lateral radiograph and an axial angle from the axial radiograph. Pull-out force was determined for all screws using a material testing machine. Results : Dissection revealed that fifteen screws on the left side actually had only unicortical and not bicortical purchase as intended. The majority of screws(92.8%) were satisfactory in terms of safety. There were no injuries to the spinal cord. On the right side(unicortical), 98.9% of the screws were "satisfactory" and on the left side(bicortical) 68.1% were "satisfactory". There was a 5.8% incidence of direct arterial injury and a 17.4% incidence of direct nerve root injury with the bicortical screws. There were no "direct injuries" with the unicortical screws for the nerve root or vertebral artery. The unicortical screws had a 21.4% incidence of direct injury of the facet joint, while the bicortical screws had a 21.7% incidence. The majority of "direct injury" of bicortical screws were placed by the surgeon with the least experience. The performance of the resident surgeon was significantly different from the attending or fellow(p<0.05) in terms of safety of the nerve root and vertebral artery. The attending's performance was significantly better than the resident or fellow(p<0.05) in terms of safety of the facet joint. There was no relationship between the safety of a screw and its zone placement. The axial deviation angle measured $23.5{\pm}6.6$ degrees and $19.8{\pm}7.9$ degrees for the unicortical and bicortical screws, respectively. The resident surgeon had a significantly lower angle than the attending or fellow(p<0.05). The sagittal angle measured $66.3{\pm}7.0$ degrees and $62.3{\pm}7.9$ degrees for the unicortical and bicortical screws, respectively. The attending had a significantly lower sagittal angle than the fellow or resident(p<0.05). Thirty-three screws that entered the facet joint were tested for pull-out strength but excluded from the data because they were not lateral mass screws per-se and had deviated substantially from the intended final trajectory. The mean pull-out force for all screws was $542.9{\pm}296.6N$. There was no statistically significant difference between the pull-out force for unicortical($519.9{\pm}286.9N$) and bicortical($565.2{\pm}306N$) screws. There was no significant difference in pull-out strengths with respect to zone placement. Conclusion : It is our belief that the risk associated with bicortical purchase mandates formal spine training if it is to be done safely and accurately. Unicortical screws are safer regardless of level of training. It is apparent that 14mm lateral mass screws placed in a supero-lateral trajectory in the adult cervical spine provide an equivalent strength with a much lower risk of injury than the longer bicortical screws placed in a similar orientation.

  • PDF