• Title/Summary/Keyword: Graded 다층박막거울

Search Result 2, Processing Time 0.014 seconds

Analysis of Reflectivity for Interfacial Roughness of Depth-Graded W/Si Multilayer Mirror (두께 변화 W/Si 다층박막거울의 계면 거칠기에 대한 반사율 분석)

  • Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.101-106
    • /
    • 2018
  • Multilayer mirrors have widely been used for monochromatization of X-ray with high reflection efficiency. The reflected X-ray energy or wavelength is determined by the d-spacing of a multilayer mirror and the incidence angle. The reflectivity critically depends on the number of bilayers and surface roughness on each interface. The multilayer mirror has a structure of alternative deposition of high and low Z-elements on the substrate. Each interface should be considered in the calculation of reflectivity. In this paper, we examine the degradation of reflectivity by the inter-diffusion combined with surface roughness on each interface for a W/Si multilayer mirror. In the depth-graded W/Si multilayer mirror, the FWHMs for angle and energy were larger than them of the uniform multilayer mirror. Inter-diffusion considerable gave rise to the degradation of reflectivity. To obtain measured reflectivity closed to the expected reflectivity, the inter-diffusion on W-Si and Si-W interfaces should be considered.

Acquisition of Monochromatic X-ray using Graded Multilayer Mirror (Graded 다층박막거울을 이용한 단색 엑스선 획득)

  • Ryu, Cheolwoo;Choi, Byoungjung;Son, Hyunhwa;Kwon, Youngman;Kim, Byoungwook;Kim, Youngju;Chon, Kwonsu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.205-211
    • /
    • 2015
  • At a recent medical imaging technology, the major issue of X-ray diagnosis in breast cancer is the early detection of breast cancer and low patient's exposure dose. As one of studies to acquire a monochromatic X-ray, Technologies using multilayer mirror had been preceded. However, a uniform multilayer mirror that consists of uniform thin-film thickness can acquire a monochromatic X-ray only in the partial area corresponds to angle of incidence of white X-ray, so there are limits for X-ray imaging technology applications. In this study, we designed laterally graded multilayer mirror(below GML) that reflects same monochromatic X-ray over the entire area of thin-film mirror, which have the the thickness of the linear gradient that correspond to angle of incidence of white X-ray. By using ion-beam sputtering system added the mask control system we fabricated a GML which has size of $100{\times}100mm^2$. The GML is designed to achieve the monochromatic X-ray of 17.5kev energy and has thin-film thickness change from 4.62nm to 6.57nm(3.87nm at center). It reflects the monochromatic X-ray with reflectivity of more than 60 percent, FWHM of below 2.6keV and X-ray beam width of about 3mm. The monochromatic X-ray corresponded to 17.5keV using GML would have wide application in development of mammography system with high contrast and low dose.