• 제목/요약/키워드: Grade 91 steel

검색결과 16건 처리시간 0.017초

Creep and creep crack growth behaviors for base, weld, and heat affected zone in a grade 91 weldment

  • Kim, Woo-Gon;Sah, Injin;Kim, Seon-Jin;Lee, Hyeong-Yeon;Kim, Eung-Seon
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.572-582
    • /
    • 2021
  • This study investigated the creep and creep crack growth (CCG) behavior of the base metal (BM), weld metal (WM), and heat affected zone (HAZ) in a Gr. 91 weldment, which was made by a shield metal arc weld process. A series of tensile, creep, and CCG tests were performed for the BM, WM, and HAZ at 550 ℃. Creep behavior of the BM, WM, and HAZ was analyzed in terms of various creep laws; Norton's power-law, Monkman-Grant relation and damage tolerance factor (λ), and their constants were determined. In addition, each CCGR law for the BM, WM, and HAZ was proposed and compared in terms of a C*-fracture parameter. The WM and HAZ revealed faster creep rate, lower rupture ductility, and faster CCGRs than the BM, but they showed a similar behavior in the creep and CCG. The CCGRs obtained in the present study exhibited a marginal difference when compared with those of RCC-MRx of currently elevated design code in France. A creep crack path in the HAZ plane progressed towards a weak fine-grained HAZ adjacent to the BM.

Modified 9Cr-1Mo 강의 크리프 균열성장 거동에 관한 통계적 해석 (Statistical Analysis for Creep Crack Growth Behavior of Modified 9Cr-1Mo Steel)

  • 정익희;김우곤;윤송남;류우석;김선진
    • 대한금속재료학회지
    • /
    • 제47권5호
    • /
    • pp.283-289
    • /
    • 2009
  • This paper dealt with a statistical analysis for evaluating the creep crack growth rate (CCGR) for Modified 9Cr-1Mo (ASTM Grade 91) steel. The CCGR data was obtained by the creep crack growth (CCG) tests conducted under various applied loads at $600^{\circ}C$. To obtain logically the B and q values used in the CCGR equation, three methods such as the least square fitting method (LSFM), the mean value method (MVM) and the probabilistic distribution method (PDM) were adopted and their CCGR lines were compared, respectively. In addition, a number of random variables were generated by using the Monte Carlo simulation (MCS), and the CCGR lines were predicted probabilistically. It was found that both the B and q coefficients followed a 2-parameter Weibull distribution well. In the case of the ranges of 10-90% for the probability variables, P(B, q), the CCGR lines were predicted. Fractographic study was conducted from the specimen after the CCG tests.

초고강도 1470 MPa급 판재의 파단 이방성 실험 결과에 관한 연구 (Investigation on the Experimental Results of Anisotropic Fracture Behavior for UHSS 1470 MPa Grade Sheets)

  • 이진우;봉혁종;김대용
    • 소성∙가공
    • /
    • 제32권2호
    • /
    • pp.87-91
    • /
    • 2023
  • In the present work, the ductile fracture behaviors of ultra-high strength steel sheets along the different loading directions are investigated under various loading paths. Three loading paths, i.e., in-plane shear, uniaxial tension, plane strain tension deformations, are considered, and the corresponding specimens are described. The experiments are conducted using the digital image correlation (DIC) system to analyze the strain at the onset of the fracture. The experimental results show that the loading path for each specimen sample is linear, and different values of the fracture strains for the loading direction from the plane strain tension are observed. The ductile fracture model of the modified Mohr-Coulomb (MMC) is constructed based on the experimental data and evaluated along the rolling direction and transverse direction under various loading paths.

Tensile and impact toughness properties of various regions of dissimilar joints of nuclear grade steels

  • Karthick, K.;Malarvizhi, S.;Balasubramanian, V.;Krishnan, S.A.;Sasikala, G.;Albert, Shaju K.
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.116-125
    • /
    • 2018
  • Modified 9Cr-1Mo ferritic steel is a preferred material for steam generators in nuclear power plants for their creep strength and good corrosion resistance. Austenitic stainless steels, such as type 316LN, are used in the high temperature segments such as reactor pressure vessels and primary piping systems. So, the dissimilar joints between these materials are inevitable. In this investigation, dissimilar joints were fabricated by the Shielded Metal Arc Welding (SMAW) process with Inconel 82/182 filler metals. The notch tensile properties and Charpy V-notch impact toughness properties of various regions of dissimilar metal weld joints (DMWJs) were evaluated as per the standards. The microhardness distribution across the DMWJs was recorded. Microstructural features of different regions were characterized by optical and scanning electron microscopy. Inhomogeneous notch tensile properties were observed across the DMWJs. Impact toughness values of various regions of the DMWJs were slightly higher than the prescribed value. Formation of a carbon-enriched hard zone at the interface between the ferritic steel and the buttering material enhanced the notch tensile properties of the heat-affected-zone (HAZ) of P91. The complex microstructure developed at the interfaces of the DMWJs was the reason for inhomogeneous mechanical properties.

Clinical factors affecting the longevity of fixed retainers and the influence of fixed retainers on periodontal health in periodontitis patients: a retrospective study

  • Han, Ji-Young;Park, Seo Hee;Kim, Joohyung;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of Periodontal and Implant Science
    • /
    • 제51권3호
    • /
    • pp.163-178
    • /
    • 2021
  • Purpose: The aim of this study was to evaluate clinical factors affecting the longevity of fixed retainers and the influence of fixed retainers on periodontal health in periodontitis patients. Methods: In total, 52 patients with at least 2 years of follow-up after periodontal and orthodontic treatment were included in this study. After scaling and root planing, orthodontic treatment with fixed appliances or clear aligners was performed. Fixed retainers with twist-flex stainless steel wires were bonded to the palatal or lingual sides of anterior teeth. Changes in clinical parameters, including the plaque index, gingival index, calculus index (CI), probing pocket depth, and radiographic bone levels, were evaluated before bonding of fixed retainers and at a 12-month follow-up. Cumulative survival rates (CSRs) for retainer failure were evaluated according to sex, site, CI, stage of periodontitis, and the severity of the irregularity with the log-rank test and hazard ratios (HRs). Results: Twelve months after bonding of fixed retainers, improvements were observed in all clinical parameters except CI and radiographic bone gain. The overall CSR of the retainers with a CI <1 at the 12-month follow-up after bonding of fixed retainers was significantly higher than that of the retainers with a CI ≥1 at the 12-month follow-up (log-rank test; P<0.001). Patients with stage III (grade B or C) periodontitis had a higher multivariate HR for retainer failure (5.4; 95% confidence interval, 1.22-23.91; P=0.026) than patients with stage I (grade A or B) periodontitis. Conclusions: Although fixed retainers were bonded in periodontitis patients, periodontal health was well maintained if supportive periodontal treatment with repeated oral hygiene education was provided. Nonetheless, fixed retainer failure occurred more frequently in patients who had stage III (grade B or C) periodontitis or a CI ≥1 at 12-month follow-up after bonding of fixed retainers.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.