• Title/Summary/Keyword: Gps

Search Result 5,489, Processing Time 0.03 seconds

Localization Improvement in GPS Interfering Spot Using Multiple Sensors of Smartphone (스마트폰의 다중 센서를 이용한 GPS 음영지역 위치추적 개선)

  • Kang, Seong-Jae;Kim, Min-Soo;Jeong, Yong-Ho;Hwang, So-Young;Yu, Don-Hui
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.121-123
    • /
    • 2011
  • The accuracy of GPS varies depending on the number of GPS satellites and is declined in GPS interfering spot such as around forest or buildings. This paper proposes a localization improvement algorithm in GPS interfering spot by integrating information of multiple sensors in smartphone. The proposed algorithm is implemented in smartphone and the performance is evaluated in campus area.

  • PDF

A Study on the Accuracy Analysis of Parcel Coordinate by RTK-GPS (RTK-GPS에 의한 일필지 좌표 결정의 정확도 분석에 관한 연구)

  • Kang, Tae-Seok;Hong, Sung-Eon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.1 s.19
    • /
    • pp.37-49
    • /
    • 2002
  • RTK-GPS(Real Time Kinematic GPS) surveying technique which allows centimeter level three-dimensional coordinates in real time has been recognized as a major advance in the science of GPS positioning. And no longer is it necessary to wait until post-processed results are computed after the surveying has been completed in field. The purpose of this study is to present the accuracy and effectiveness of the determinated parcel coordinate by RTK-GPS surveying technique, through the analysis and comparison of the surveying results both in Total Station and RTK-GPS.

  • PDF

Accuracy Estimation of Car Navigation using GPS CORS (GPS 상시관측점을 이용한 차량항법 정확도 평가)

  • 박운용;김희규;이재원;신상철
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.103-106
    • /
    • 2004
  • Nowadays it is necessary to manage the road system effectively because of the explosive increment of vehicle and goods. To resolve this problems through the fast upgrade of information about position and time of moving vehicle, the combined navigation system using GPS and complementary navigation system, i.e. INS, DR, etc. has been used. Although GPS is popular for the vehicle navigation system, this is not useful for the kinematic positioning of the vehicles in the urban canyon because of its few satellites. Therefore, this study deals with the kinematic positioning of the vehicles with GPS CORS to GPS navigation. For this, first the static single point positioning of GPS and GPS for reference station was performed to evaluate the accuracy of GPS positioning. Next, in the post-processed, the DGPS (Differential GPS) was performed for the kinematic positioning of the vehicles. So, it is expected that GPS CORS can be applicable to the control of traffic flow, the effective management of road system, and the development of ITS and it is regarded that the combined navigation system of vehicles with GPS, INS, and DR, etc. should be studied constantly.

  • PDF

GPS QUASARS AS SPECIAL BLAZARS

  • BAI J. M.;LEE MYUNG GYONG
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.125-128
    • /
    • 2005
  • In this paper, we argue that the gigahertz peaked spectrum (GPS) quasars are special blazars, blazars in dense and dusty gas enviornment. The ROSAT detection rate of GPS quasars is similar to that of flat spectrum radio quasars (FSRQs), suggesting that the relativistic jets in GPS quasars are oriented at small angle to the line of sight. Due to strong inverse Compton scattering off infrared photons from dense and dusty nuclear interstellar media in GPS quasars, most of them may have significant soft gamma-ray and X-ray emission, which is consistent with ASCA X-ray observations. Because Compton cooling in GPS quasars is stronger than that in FSRQs, synchrotron emission in GPS quasars may less dominate over thermal emission of the accretion disk and hot dust, hence most GPS quasars show low optical polarization and small variability, consistent with observations. We suggest that it is the significant radio emission of electron/positron pairs produced by the interaction of gamma-rays with the dense gas and dust grains in GPS quasars that makes GPS quasars show steep radio spectra, low radio polarization, and relatively faint VLBI/VLBA cores. Whether GPS quasars are special blazars can be tested by gamma-ray observations with GLAST in the near future, with the detection rate of GPS quasars being similar to that of FSRQs.

THE EFFECT OF SURFACE METEOROLOGICAL MEASUREMENTS ON PRECISION GPS HEIGHT DETERMINATION

  • Wang Chuan-Sheng;Liou Yuei-An;Wang Cheng-Gi
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.178-181
    • /
    • 2005
  • The positioning accuracy of the Global Positioning System (GPS) has been improved considerably during the past two decades. The main error sources such as ionospheric refraction, orbital uncertainty, antenna phase center variation, signal multipath, and tropospheric delay have been reduced substantially, if not eliminated. In this study, the GPS data collected by the GPS receivers that were established as continuously operating reference stations by International GNSS Service (IGS), Ministry of the Interior (MOl), Central Weather Bureau (CWB), and Industrial Technology Research Institute (ITRI) Of Taiwan are utilized to investigate the impact of atmospheric water vapor on GPS positioning determination. The surface meteorological measurements that were concurrently acquired by instruments co-located with the GPS receivers include temperature, pressure and humidity data. To obtain the influence of the GPS height on the proposed impact study. A hydrodynamic ocean tide model (GOTOO.2 model) and solid earth tide were used to improve the GPS height. The surface meteorological data (pressure, temperature and humidity) were introduced to the data processing with 24 troposphere parameters. The results from the studies associated with different GPS height were compared for the cases with and without a priori knowledge of surface meteorological measurements. The finding based on the measurements in 2003 is that the surface meteorological measurements have an impact on the GPS height. The associated daily maximum of the differences is 1.07 cm for the KDNM station. The impact is reduced due to smoothing when the average of the GPS height for the whole year is considered.

  • PDF

Positioning of Cadastral Control Points Using GPS (GPS에 의한 지적측량기준점의 위치해석)

  • 강준묵;김홍진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.2
    • /
    • pp.209-218
    • /
    • 1996
  • This study aims to draw a technique for practical using of GPS surveying to decide the positions of cadastrial control points. GPS surveying is carried out at cadastrial triangulation points and supplementary control points. This paper includes characteristics of transformation of WGS84 into Tokyo datum, two dimensional solutions for GPS baseline vector, and combined solutions of both GPS and terrestrial data. As a results of this study, it is verifiable that GPS surveying is very efficient to check the existing control network. 2-D network adjustment technique using GPS baseline vector is applicable to Tokyo datum without coordinate transformation. And it is expected to improve efficiency by using either rapid-static or stop and go kinematic surveying in cadastrial surveying at small areas.

  • PDF

Long-Term GPS Satellite Orbit Prediction Scheme with Virtual Planet Perturbation (가상행성 섭동력을 고려한 긴 주기 GPS 위성궤도예측기법)

  • Yoo, Seungsoo;Lee, Junghyuck;Han, Jin Hee;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.11
    • /
    • pp.989-996
    • /
    • 2012
  • The purpose of this paper is to analyze GPS (Global Positioning System) satellite orbital mechanics, and then to propose a novel long-term GPS satellite orbit prediction scheme including virtual planet perturbation. The GPS orbital information is a necessary prerequisite to pinpointing the location of a GPS receiver. When a GPS receiver has been shut down for a long time, however, the time needed to fix it before its reuse is too long due to the long-standing GPS orbital information. To overcome this problem, the GPS orbital mechanics was studied, such as Newton's equation of motion for the GPS satellite, including the non-spherical Earth effect, the luni-solar attraction, and residual perturbations. The residual perturbations are modeled as a virtual planet using the least-square algorithm for a moment. Through the modeling of the virtual planet with the aforementioned orbital mechanics, a novel GPS orbit prediction scheme is proposed. The numerical results showed that the prediction error was dramatically reduced after the inclusion of virtual planet perturbation.

A GPS Receiver Structure for Multi-beamforming (다중 빔 형성을 위한 GPS 수신기 구조)

  • Lee, Geon-Woo;Lim, Deok-Won;Lee, Chang-Won;Park, Chan-Sik;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.182-190
    • /
    • 2009
  • GPS receivers can be disrupted by intentional or unintentional jamming, then it is unable to receive GPS signals and it is impossible to get the correct navigation results. Anti-jamming schemes using array antennas are being studied well due to high performance of those, and the efforts to apply them to GPS receiver are also being done. A GPS receiver structure for a multiple beam-forming scheme among those schemes has been proposed in this paper, and the performance is also compared with that using a general GPS receiver structure. For a general GPS receiver structure, each satellite signal which is formed by a beam-forming scheme is summed to be processed in a part of digital signal processing. For a proposed GPS receiver structure, however, each satellite signal is respectively processed by a designated channel in a part of digital signal processing. Finally, it is confirmed that the proposed GPS receiver structure is superior to a general GPS receiver structure in a point of the carrier to noise power ratio and the navigation accuracy using a software platform.

A Study on Improvement of the Ship's Bearing Information using GPS (GPS를 이용한 선박의 방위정보 향상에 관한 연구)

  • Ko Kwang-Soob;Choi Chang-Mook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.528-533
    • /
    • 2005
  • The purpose of the study is to develop ship's bearing sensor using GPS receiver which can play a role as a ship's secondary compass. In this research, two GPS receivers are used to determine the bearing in real time. Then we investigated the bearing accuracy associated with the error pattern of two GPS receivers. Especially, the results are as follows the investigation on the system design of GPS-Compass, the modeling to compute heading of sailing, the analysis on bearing accuracy with the error pattern, the defining possibility to play a role as a ship's secondary compass.

A Study on the Applications of GPS/Pseudolite Navigation System (GPS/의사위성의 통합 항법에 대한 응용 연구)

  • Lee Taik-Jin;Kim kang-Ho;So Hyung-Min;Kee Chang-Don;Noh Kwang-Hyun;Lee Ki-Duk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.729-738
    • /
    • 2006
  • In recent days, navigation technology becomes more important as location based service (LBS) such as E911 and telematics are considered as attractive business fields. Commercial LBS requires that navigation system should be inexpensive and available anytime and anywhere - indoors and outdoors. If we consider these requirements, it is out of question that GPS is the most favorite system in the world. However, GPS has a serious problem. The one is that GPS does not operate indoors well. This is because GPS satellites are about 20,000km above the ground so that indoor signals are too weak to be tracked in GPS receiver. And the other is that vertical accuracy is less than horizontal accuracy, because of GPS satellites' geometry. To solve these problems, many researches have been done around the world since 1990s. This paper is also one of them and we will introduce an excellent solution by use of pseudolite. Pseudolite is a kind of signal generator, which transmits GPS-like signal. So it is same as GPS satellite in ground. In this paper, we will propose the integrated navigation system of GPS and pseudolite and show the flight test results using RC airplane to proof our navigation system. As a result, we could improve the vertical accuracy of airplane into the horizontal accuracy.