• Title/Summary/Keyword: Gossypol-degrading Bacteria

Search Result 2, Processing Time 0.017 seconds

Isolation and characterization of a novel gossypol-degrading bacteria Bacillus subtilis strain Rumen Bacillus Subtilis

  • Zhang, Yunhua;Zhang, Zhengyou;Dai, Li;Liu, Ying;Cheng, Maoji;Chen, Lijuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • Objective: The aim of the study was to isolate gossypol-degrading bacteria and to assess its potential for gossypol degradation. Methods: Rumen liquid was collected from fistulated cows grazing the experimental pasture. Approximately 1 mL of the rumen liquid was spread onto basal medium plates containing 2 g/L gossypol as the only source of carbon and was then cultured at $39^{\circ}C$ to isolate gossypol-degrading bacteria. The isolated colonies were cultured for 6 h and then their size and shape observed by microscope and scanning electron microscope. The 16S rRNA gene of isolated colonies was sequenced and aligned using National Center for Biotechnology Information-Basic Local Alignment Search Tool. The various fermentation conditions, initial pH, incubation temperature, inoculum level and fermentationperiod were analyzed in cottonseed meal (CSM). The crude protein (CP), total gossypol (TG), and free gossypol (FG) were determined in CSM after fermentation with isolated strain at $39^{\circ}C$ for 72 h. Results: Screening results showed that a single bacterial isolate, named Rumen Bacillus Subtilis (RBS), could use gossypol as a carbon source. The bacterium was identified by 16S rDNA sequencing as being 98% homologous to the sequence of Bacillus subtilis strain GH38. The optimum fermentation conditions were found to be 72 h, $39^{\circ}C$, pH 6.5, moisture 50%, inoculum level $10^7cell/g$. In the optimum fermentation conditions, the FG and TG content in fermented CSM decreased 78.86% and 49% relative to the control. The content of CP and the essential amino acids of the fermented CSM increased respectively, compared with the control. Conclusion: The isolation of a gossypol-degrading bacterium from the cow rumen is of great importance for gossypol biodegradation and may be a valuable potential source for gossypol-degradation of CSM.

Effect of lactic acid bacteria and yeast supplementation on anti-nutritional factors and chemical composition of fermented total mixed ration containing cottonseed meal or rapeseed meal

  • Yusuf, Hassan Ali;Piao, Minyu;Ma, Tao;Huo, Ruiying;Tu, Yan
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.556-566
    • /
    • 2022
  • Objective: This study aimed to determine the appropriate supplementation level of lactic acid bacteria (LAB; Lactobacillus plantarum and Bacillus clausii), yeast (Saccharomyces cariocanus and Wickerhamomyces anomalus) for degrading free gossypol and glucosinolate in the fermented total mixed ration (TMR) containing cottonseed meal (CSM) or rapeseed meal (RSM), to improve the utilization efficiency of these protein sources. Methods: For LAB, L. plantarum or B. clausii was inoculated at 1.0×108, 1.0×109, 1.0×1010, and 1.0×1011 colony-forming unit (CFU)/kg dry matter (DM), respectively. For yeast, S. cariocanus or W. anomalus was inoculated at 5×106, 5×107, 5×108, and 5×109 CFU/kg DM, respectively. The TMR had 50% moisture and was incubated at 30℃ for 48 h. After fermentation, the chemical compositions, and the contents of free gossypol and glucosinolate were determined. Results: The results showed that the concentration of free gossypol content was reduced (p<0.05), while that of the crude protein content was increased (p<0.05) in the TMR containing CSM inoculated by B. clausii (1×109 CFU/kg DM) or S. cariocanus (5×109 CFU/kg DM). Similarly, the content of glucosinolate was lowered (p<0.05) and the crude protein content was increased (p<0.05) in TMR containing RSM inoculated with B. clausii (1×1010 CFU/kg DM) or S. cariocanus (5×109 CFU/g DM). Conclusion: This study confirmed that inclusion of B. clausii with 1.0×109 or 1.0×1010 CFU/kg DM, or S. cariocanus (5×109 CFU/kg DM) to TMR containing CSM/RSM improved the nutritional value and decreased the contents of anti-nutritional factors.