• 제목/요약/키워드: Gossypium hirsutum

검색결과 26건 처리시간 0.029초

Bioloistic-mediated Transformation of Cotton (Gossypium hirsutum L.): Embryogenic Calli as Explant

  • Haq Ikram-ul;Asad Shaheen;Zafar Yusuf
    • Journal of Plant Biotechnology
    • /
    • 제7권4호
    • /
    • pp.211-218
    • /
    • 2005
  • Genetic transformation was carried out by using biolistic gun method. The hypocotyl derived embryogenic calli (explants) of cotton (Gossypium hirsutum L.) cv. Cocker-312 were transformed with a recombinant pGreen II plasmid, in which both, bar (selection marker) and GUS (${\beta}$-glucuronidase) reporter genes were incorporated. Explants were arranged on osmoticum-containing medium (0.5M mannitol) 4 hours prior to and 16 hours after bombardment that was resulted into an increase about >80% for GUS stable expression. 3 days after bombardment, GUS assay was performed, which exhibited, $18.36{\pm}1.00$ calli showed blue spots. The transformed embryogenic calli were cultured on selection medium (@ 6 mg/L basta) for 3 months. The putative transgenic plants were developed via selective somatic embryogenesis (@1.50 mg/L basta); maximum $27.58{\pm}1.25$ somatic embryos were obtained while $17.47{\pm}1.00$ embryos developed into plantlets (@ 0.75mg/L basta). In five independent experiments, up to 7.24% transformation efficiency was recorded. The presence of the transgenes was analyzed by using PCR and southern hybridization analysis. The transgenic plants were developed with in 6-7 months, but mostly transformants were abnormal in morphology.

Diversity in Betasatellites Associated with Cotton Leaf Curl Disease During Source-To-Sink Movement Through a Resistant Host

  • Khan, Iftikhar Ali;Akhtar, Khalid Pervaiz;Akbar, Fazal;Hassan, Ishtiaq;Amin, Imran;Saeed, Muhammad;Mansoor, Shahid
    • The Plant Pathology Journal
    • /
    • 제32권1호
    • /
    • pp.47-52
    • /
    • 2016
  • Cotton leaf curl is devastating disease of cotton characterized by leaf curling, vein darkening and enations. The disease symptoms are induced by DNA satellite known as Cotton leaf curl Multan betasatellite (CLCuMuB), dominant betasatellite in cotton but another betasatellite known as Chili leaf curl betasatellite (ChLCB) is also found associated with the disease. Grafting experiment was performed to determine if host plant resistance is determinant of dominant population of betasatellite in cotton (several distinct strains of CLCuMuB are associated with the disease). Infected scion of Gossypium hirsutum collected from field (the source) was grafted on G. arboreum, a diploid cotton species, resistant to the disease. A healthy scion of G. hirsutum (sink) was grafted at the top of G. arboreum to determine the movement of virus/betasatellite to upper susceptible scion of G. hirsutum. Symptoms of disease appeared in the upper scion and presence of virus/betasatellite in the upper scion was confirmed via molecular techniques, showing that virus/betasatellite was able to move to upper scion through resistant G. arboreum. However, no symptoms appeared on G. arboreum. Betasatelites were cloned and sequenced from lower scion, upper scion and G. arboreum which show that the lower scion contained both CLCuMuB and ChLCB, however only ChLCB was found in G. arboreum. The upper scion contained CLCuMuB with a deletion of 78 nucleotides (nt) in the non-coding region between Arich sequence and ${\beta}C1$ gene and insertion of 27 nt in the middle of ${\beta}C1$ ORF. This study may help in investigating molecular basis of resistance in G. arboreum.

Cloning and expression of glutathione S-transferase (GST) cDNA from Gossypium hirsutum L.

  • Kang, Won-Hee;Kim, Myong-Jo;Lim, Jung-Dae;Yun, Song-Joong;Chung, Ill-Min;Yu, Chang-Yeon
    • 한국약용작물학회지
    • /
    • 제10권4호
    • /
    • pp.294-297
    • /
    • 2002
  • A gene coding for the GST of cotton (Gh-5) was cloned into Escherichia coli and experssed. The enzyme remained within the cytoplasm of E. coli. An 696 bp open reading frame was in the 988 base pair fragment of the recombinant plasmid pET-30b(+). The deduced protein sequence consists of 232 amino acids and has a molecular mass of 30235.58 Da. The cloned enzyme conjugated reduced glutathione and 1-chloro-2,4-dinitrobenzene (CDNB). Plant GST cDNA was expressed in microbe and produced polypeptide had function as an enzyme.

약용식물 유래 정유성분 분석 및 산화 스트레스로부터 PC12 신경세포 보호 효과 (Chemical Composition and Protective Effect of Essential Oils Derived from Medicinal Plant on PC12 Neuro-cells Induced by Oxidative Stress)

  • 이지연;박정용;김동휘;최수지;장귀영;서경혜
    • 한국식품영양학회지
    • /
    • 제33권2호
    • /
    • pp.215-221
    • /
    • 2020
  • The purpose of this study was to investigate the protective effect on oxidative stress induced PC12 cells, and volatile flavor composition of essential oils derived from medicinal plant seeds- Gossypium hirsutum L. (G. hirsutum), Coix lachryma-jobi (C. lachryma-jobi) and Oenothera biennis (O. biennis). The essential oils were obtained by the solvent (hexane) extraction method from the seeds. The essential oils of the seeds were analyzed by the solid-phase micro-extraction gas chromatography mass spectrometry (SPME-GC/MS). The major compounds of G. hirsutum, C. lachryma-jobi and O. biennis were cyclonexanol (16.65%), β-asarone (14.29%) and ylangene (50.01%). The DPPH radical scavenging activity (IC50) was the highest value of 8.52 mg/mL in the O. biennis. Additionally, IC50 values of G. hirsutum and C. lachryma-jobi were 26.76 mg/mL and 36.81 mg/mL. For the oxidative stress on PC12 cells, we treated with hydrogen peroxide (H2O2). The pretreatment of oxidative stress induced PC12 cells with all the essential oils preserved or increased their cell viability and G. hirsutum and O. biennis attenuated the ROS generation (by 68.75% and 56.25% vs. H2O2 control). The results of this study suggest that the essential oils derived from medicinal plant seeds could be used as valuable back data as a natural essential oil material to prevent neurodegenerative diseases by protecting neuro-cells.