• Title/Summary/Keyword: Gosan station

Search Result 30, Processing Time 0.018 seconds

Assessing the Impact of Locally Produced Aerosol on the Rainwater Composition at the Gosan Background Site in East Asia

  • Han, Yeongcheol;Huh, Youngsook
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.69-80
    • /
    • 2014
  • It is often assumed that atmospheric observations at remote sites represent long-range transport of airborne material, and local influences are overlooked. We evaluated the impact of local input on the rainwater composition at Gosan Station, a strategic site for monitoring the continental outflow from Asia. We analyzed a 14-year record of rainwater chemical composition archived by the Korea Meteorological Administration and detected local terrestrial contribution for nitrate, sulfate and ammonium. We also measured the chemical composition of rainwater sampled simultaneously at multiple locations within the premises of the Gosan Station, from which local influence with meter-scale spatial heterogeneity could be discerned. We estimate that the local input accounted for at least ~10% of the wet deposition of nitrogen and ~12% of the wet deposition of sulfur during the 14 years. This highlights the significance of the local influence, which should be carefully assessed when interpreting atmospheric observations at this site.

Analysis of Variation Characteristics of Greenhouse Gases in the Background Atmosphere Measured at Gosan, Jeju (한반도 배경대기 중 온실기체의 농도 변동 특성 분석)

  • Ju, Ok-Jung;Cha, Jun-Seok;Lee, Dong-Won;Kim, Young-Mi;Lee, Jung-Young;Park, Il-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.487-497
    • /
    • 2007
  • Increase of the greenhouse gases emissions during last century has led remarkable changes in our environment and climate system. Continuous monitoring of atmospheric constituents over the world is positively necessary to understand these changes around us. The concentrations of greenhouse gases ($CO_2,\;CH_4,\;N_2O,\;CFCs$) have been continuously measured at Global Climate Change Monitoring station in Gosan, Jeju since January, 2002. In this study, the variation characteristics of greenhouse gases as well as their annual, seasonal and diurnal trend using the data from January, 2002 to December, 2005 were analyzed. The raw data which was used in the analysis were validated with the methods recommended by WDCGG (World Data Center for Greenhouse Gases). The concentration of $CO_2$ was increasing continuously by 2.1 ppm/year, while $CH_4$ did not show any increasing or decreasing trend clearly for 4 years. The concentration of $N_2O$ was slightly increasing and CFCs were decreasing except CFC-12 which has longer lifetime compared with other CFCs. The variations of the greenhouse gases at Gosan were shown to be consistent with the global trend. But the concentration level of $CO_2$ in Korea was more or less higher than abroad.

Background Level of Atmospheric Radon-222 Concentrations at Gosan Station, Jeju Island, Korea in 2011

  • Kim, Won-Hyung;Ko, Hee-Jung;Hu, Chul-Goo;Lee, Haeyoung;Lee, Chulkyu;Chambers, S.;Williams, A.G.;Kang, Chang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1149-1153
    • /
    • 2014
  • Real-time monitoring of hourly atmospheric radon (Rn-222) concentration was performed throughout 2011 at Gosan station, Jeju Island, one of the least polluted regions in Korea, in order to characterize the background levels, and temporal variations on diurnal to seasonal time-scales. The annual mean radon concentration for 2011 was $2527{\pm}1356$ mBq $m^{-3}$, and the seasonal cycle was characterized by a broad winter maximum, and narrow summer minimum. Mean monthly radon concentrations, in descending order of magnitude, were Oct > Sep > Feb > Nov > Jan > Dec > Mar > Aug > Apr > Jun > May > Jul. The maximum monthly mean value (3595 mBq $m^{-3}$, October), exceeded the minimum value (1243 mBq $m^{-3}$, July), by almost a factor of three. Diurnal composite hourly concentrations increased throughout the night to reach their maximum (2956 mBq $m^{-3}$) at around 7 a.m., after which they decreased to their minimum value (2259 mBq $m^{-3}$) at around 3 p.m. Back trajectory analyses indicated that the highest radon events typically exhibited long-term continental fetch over Asia before arriving at Jeju. In contrast, low radon events were generally correlated with air mass fetch over the North Pacific Ocean. Radon concentrations typical of predominantly continental, and predominantly oceanic fetch, differed by a factor of 3.8.

Analysis of Water Soluble Organic Carbon (WSOC) and n-alkanes for the Ambient PM10 in the Anmyon Island (안면도 미세먼지의 수용성 유기탄소 및 알칸계 유기성분 분석)

  • Lee, Ji Yi;Kim, Yu Won;Kim, Eun Sil;Lee, Sun Young;Lee, Hyunhee;Yi, Seung-Muk;Kwon, Su Hyun;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.7 no.4
    • /
    • pp.131-138
    • /
    • 2011
  • The concentration levels of n-alkanes and water soluble organic carbon (WSOC) at Anmyon, a Global Atmospheric Watch (GAW) station operated by Korea Meteorological Administration (KMA), has been characterized for the PM10 samples collected in 2010. It was found that the concentrations of WSOC at Anmyon were comparable to those in Seoul and lower than those in Gosan, another background area in Korea. However, the maximum concentration of the WSOC at Anmyon was observed in fall while that at Seoul was in winter. It suggests that the emission and/or transformation characteristics at two areas are different. The concentrations of n-alkanes at Anmyon were slightly lower than at Gosan and about one thirds at Seoul. However, it was found that at Gosan the n-alkanes from natural sources were dominant at Gosan. On the other hand, n-alkanes from anthropogenic sources were dominant at Anmyon. Study directions to further understand the characteristics of aerosols at Anmyon are discussed.

The Characteristics of Temporal and Spatial Distribution of Surface Ozone Concentration in Jeju Island (제주지역 지표 오존 농도의 시.공간적 분포 특성)

  • Lee, Gi Ho;Kim, Dae Jun;Heo, Cheol Gu
    • Journal of Environmental Science International
    • /
    • v.13 no.4
    • /
    • pp.377-387
    • /
    • 2004
  • This study has been performed to clarify the characteristics of temporal and spatial distribution of surface ozone concentration over Jeju Island, one of the cleanest areas in Korea with low emissions of air pollutants. Ozone data are monitored at four sites in Jeju Island. These monitoring sites are located at two urban area(referred to Ido and Donghong), coastal area(Gosan site) and forest site(Chuna site). Ozone data has been routinely collected at these sites for the late four years. The patterns of seasonal cycle of ozone concentrations at all stations show the bimodal with the peaks on spring and autumn and a significant summer minimum. However, the patterns of diurnal variations at rural station, i.e., Gosan and Chuna sites are considerably different to those at urban stations such as Ido and Donghong sites. The patterns of $\DeltaO_3$ variations are very similar with those of monthly mean ozone concentrations and $\DeltaO_3$ values are exceeded 30 ppb, at urban stations. This may be that urban stations are more influenced by local photochemical reactions rather than rural stations. In order to assess the potential roles of meteorological parameters on ozone formation, the meteorological parameters, such as radiation, temperature, and wind are monitored together with ozone concentrations at all stations. The relationships of meteorological parameters to the corresponding ozone concentration are found to be insignificant in Jeju Island. However, at Gosan and Donghong stations, when the sea breeze blew toward the station, the ozone concentration is considerably increased.

Analysis of the Characteristics and High Concentrations of Carbon Dioxide Measured at the Gosan Site in Jeju, Korea in 2007 (2007년 제주 고산의 이산화탄소 농도 현황 및 고농도 사례 분석)

  • Kim, Seung-Yeon;Lee, Jae-Bum;Yu, Jeong-Ah;Hong, Yu-Deog;Song, Chang-Geun
    • Journal of Climate Change Research
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2011
  • In order to identify the current state of the $CO_2$ concentrations at the Gosan site in Jeju, the data from the Gosan station was compared with the ones from domestic and foreign sites registered in the World Data Centre for Greenhouse Gases(WDCGG). As a result, the $CO_2$ concentrations in the Asian region including Gosan site were higher than in the other continents, which can be explained that the $CO_2$ emissions in the Asian region have been rapidly increasing due to the recent economic growth. In comparison with ther Asian-Pacific sites (i.e., Ryori, Waliguan, and Mauna Loa), Gosan site showed the highest $CO_2$ concentrations because this site can be easily affected by China emissions. With the trajectory analysis and the ratios of air pollutants, we found that the high concentrations of Gosan site in January were mainly caused by the long-range transport from China, while in August the high concentration in the night time by the stagnation and the active plant respiration. Also, in May and November it occurred as the polluted air from China was transported with migratory cyclone.

Development of the Wind Power Forecasting System, KIER Forecaster (풍력발전 예보시스템 KIER Forecaster의 개발)

  • Kim Hyun-Goo;Lee Yung-Seop;Jang Mun-Seok;Kyong Nam-Ho
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.37-43
    • /
    • 2006
  • In this paper, the first forecasting system of wind power generation, KIER Forecaster is presented. KIER Forecaster has been constructed based on statistical models and was trained with wind speed data observed at Gosan Weather Station nearby Walryong Site. Due to short period of measurements at Walryong Site for training the model, Gosan wind data were substituted and transplanted to Walryong Site by using Measure-Correlate-Predict(MCP) technique. The results of One to Three-hour advanced forecasting models are consistent with the measurement at Walryong site. In particular, the multiple regression model by classification of wind speed pattern, which has been developed in this work, shows the best performance comparing with neural network and auto-regressive models.

  • PDF

Development of the Wind Power Forecasting System, KIER Forecaster (풍력발전 예보시스템 KIER Forecaster의 개발)

  • Kim, Hyun-Goo;Jang, Mun-Seok;Kyong, Nam-Ho;Lee, Yung-Seop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.323-324
    • /
    • 2006
  • In the present paper a forecasting system of wind power generation for Walryong Site, Jejudo is presented, which has been developed and evaluated as a first step toward establishing Korea Forecasting Model of Wind Power Generation. The forecasting model, KIER forecaster is constructed based on statistical models and is trained with wind speed data observed at Gosan Weather Station nearby Walryong Si to. Due to short period of measurements at Walryong Site for training statistical model, Gosan wind data were substituted and transplanted to Walryong Site by using Measure-Correlate-Predict technique. Three-hour advanced forecast ins shows good agreement with the measurement at Walryong site with the correlation factor 0.88 and MAE(mean absolute error) 15% under.

  • PDF

Composition of Organic Compounds in the Ambient PM10 of the Anmyon Island (안면도 미세먼지 내 유기성분들의 분포 특성)

  • Lee, Ji Yi;Hwang, Eun Jin;Lim, Hyung Bae;Kim, Yu Won;Kim, Eun Sil;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.187-197
    • /
    • 2013
  • To understand the characteristics of organic aerosol(OA) at the background atmosphere of Korea, an observation of atmospheric PM10 was conducted at a Global Atmospheric Watch(GAW) station operated by the Korean Meteorological Administration at Anmyon Island during 2010. Various organic compounds were analyzed from 26 samples by using a gas chromatography-mass spectrometer. Water soluble organic carbon(WSOC) was also analyzed by using a total organic carbon(TOC) analyzer. Among 6 classes with 68 target compounds detected, the classes of n-alkanoic and alkenoic acids ($326.67{\pm}75.40ngm^{-3}$) and dicarboxylic acids ($323.74{\pm}361.89ngm^{-3}$) were found to be major compound classes in the atmosphere of Anmyon Island. Compared to the previous results reported for 2005 spring samples at Gosan site, the concentrations of organic compounds at Anmyon Island were 3-10 times higher than Gosan site due to the difference of location and sampling period. The concentrations of organic compounds were varied with the atmospheric conditions. Significant increase of the concentrations of dicarboxylic and carboxylic acids in the smog episode indicated that secondary oxidation of organic compounds was major factor to increase OA concentration during smog episode in the Anmyon Island. It was found that the compositions of the OA measured at Anmyon Island were dependent on the air parcel trajectories.

A Study on Development of a Forecasting Model of Wind Power Generation for Walryong Site (월령단지 풍력발전 예보모형 개발에 관한 연구)

  • Kim, Hyun-Goo;Lee, Yeong-Seup;Jang, Mun-Seok;Kyong, Nam-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.27-34
    • /
    • 2006
  • In this paper, a forecasting model of wind speed at Walryong Site, Jeju Island is presented, which has been developed and evaluated as a first step toward establishing Korea Forecasting Model of Wind Power Generation. The forecasting model is constructed based on neural network and is trained with wind speed data observed at Cosan Weather Station located near by Walryong Site. Due to short period of measurements at Walryong Site for training statistical model Gosan Weather Station's long-term data are substituted and then transplanted to Walryong Site by using Measure-Correlate-Predict technique. One to three-hour advance forecasting of wind speed show good agreements with the monitoring data of Walryong site with the correlation factors 0.96 and 0.88, respectively.