• 제목/요약/키워드: Google Play Store

검색결과 56건 처리시간 0.027초

Comparative Study of U-Healthcare Applications between Google Play Store and Apple iTunes App Store in Korea

  • Nam, Sang-Zo
    • International Journal of Contents
    • /
    • 제10권3호
    • /
    • pp.1-8
    • /
    • 2014
  • In this paper, we collect and analyze the status of mobile phone applications (hereafter apps) in the healthcare and fitness category of the Apple iTunes App Store and Google Play Store. We determine the number of apps and analyze statistical aspects such as classifications, age rating, fees, and user evaluation of the popular items. As of September 30, 2013, there were 236 popular apps available from iTunes. Google Play offered 720 apps. We discover that apps for healthcare and fitness are diverse. Apps for physical exercise have the greatest popularity. The proportions of apps that are suitable for all ages among the Google and iTunes popular apps are 55.8% and 89.4%, respectively. The user evaluation of apps in iTunes is relatively less positive. We determine that the proportion of paid apps to free apps in Google is higher than that of the apps in iTunes. We perform hypothesis tests and find statistically significant differences in age rating and perceived satisfaction between the apps of the Apple iTunes App Store and Google Play Store. However, we find no meaningful differences in the classification and price of the apps between the two app stores. We perform hypothesis tests to verify the differences in age rating and perceived satisfaction between the paid and free apps within and across the Google Play Store and iTunes App Store. There are statistically significant differences in the age rating between the paid and free apps in the Google play store, between the Google free and iTunes free apps, between the Google paid and iTunes paid apps, between the Google free and iTunes paid apps, and between the Google paid and iTunes free apps. There are statistically significant differences in the perceived satisfaction between the Google free and iTunes free apps, between the Google paid and iTunes paid apps, between the Google free and iTunes paid apps, and between the Google paid and iTunes free apps.

사용자 관점의 모바일 앱 스토어 비교연구 : 구글 플레이와 T 스토어를 중심으로 (Two App Stores in One Smartphone : A Comparative Study on Mobile Application Stores between Google Play and T-Store)

  • 앤드류 델라 로사;이홍주
    • 한국IT서비스학회지
    • /
    • 제12권2호
    • /
    • pp.269-289
    • /
    • 2013
  • The tremendous advancement of technology sparked a lot of opportunities for developers and consumers to pave way to a dynamic application market in smartphones. This study focuses on the users' perspective, that is, the preference between two application markets that varies in many perspectives of its features. Hence, the purpose of this study is to provide a comparative study on two mobile application stores in smartphones; Google Play and T-Store. A survey was conducted to compare the markets, and the results showed the different influencing factors on choosing and using each application store. In addition, the results somehow revealed the harmony of co-existence in smartphones.

안드로이드 앱 지원 모델의 변화 (Changes in the Android App Support Model)

  • 이병석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.201-203
    • /
    • 2019
  • Google Play에 새로운 콘텐츠들이 나오고 경쟁함으로써 앱과 게임의 크기는 지속적으로 증가하고 있다. 앱과 게임의 크기가 커질수록 Google Play 스토어를 통한 앱 설치가 줄어들고 있다. 본문은 기존 지원 모델인 APK에 대한 구조 및 한계에 대해 이야기하고 새로운 지원 모델인 AAB(Android App Bundle) 구조에 대해 이야기한다. 추가로 향후 전망을 해보고자 한다.

  • PDF

Analyzing User Feedback on a Fan Community Platform 'Weverse': A Text Mining Approach

  • Thi Thao Van Ho;Mi Jin Noh;Yu Na Lee;Yang Sok Kim
    • 스마트미디어저널
    • /
    • 제13권6호
    • /
    • pp.62-71
    • /
    • 2024
  • This study applies topic modeling to uncover user experience and app issues expressed in users' online reviews of a fan community platform, Weverse on Google Play Store. It allows us to identify the features which need to be improved to enhance user experience or need to be maintained and leveraged to attract more users. Therefore, we collect 88,068 first-level English online reviews of Weverse on Google Play Store with Google-Play-Scraper tool. After the initial preprocessing step, a dataset of 31,861 online reviews is analyzed using Latent Dirichlet Allocation (LDA) topic modeling with Gensim library in Python. There are 5 topics explored in this study which highlight significant issues such as network connection error, delayed notification, and incorrect translation. Besides, the result revealed the app's effectiveness in fostering not only interaction between fans and artists but also fans' mutual relationships. Consequently, the business can strengthen user engagement and loyalty by addressing the identified drawbacks and leveraging the platform for user communication.

A Study on Improvement of Electronic Library Services Using User Review Data in Mobile App Market

  • Noh, Younghee;Ro, Ji Yoon
    • International Journal of Knowledge Content Development & Technology
    • /
    • 제11권1호
    • /
    • pp.85-111
    • /
    • 2021
  • This study aims to analyze users' assessment of electronic libraries in the mobile app market and promote service improvement based on this. To this end, the basic background and purpose of the research, research method, and research scope were first set, and the relevant literature and empirical prior studies were analyzed. Next, users' evaluations of electronic libraries were collected and analyzed from Google Play Store. Based on the results analyzed, measures to improve the quality of electronic libraries were discussed. Based on the results of the study, the following improvement measures are proposed. Need for systemic improvement and stabilization. Provision of applications suitable for multi-device environments. Resumption of services after systematic inspection after updating. Simplification of sign up, log in, and authentication procedures. User support through real-time chat. Introduction of a detailed assessment of reviews. Provision of guidance and user manual for electronic libraries. Improvements to expand user convenience, and Securing differentiation from other similar services.

Analysis of Correlation between Real-time Sales Ranking and Information Provided by Mobile Movie Platform: Focus on Non-descriptive Information in Google Play Store's Best-selling Movies

  • Nam, Sangzo
    • 한국정보기술학회 영문논문지
    • /
    • 제9권2호
    • /
    • pp.41-54
    • /
    • 2019
  • The cinema circuit is facing a digital, network, and mobile age, which expands non-theater accessibility to movies. Application platforms are situated as the most competitive business model that provide digital content such as games, music, books, and movies. Consumers can acquire content-related information not just offline, but online as well. Therefore, item information provided by application platforms is required. The information provided by application platforms consists of richly descriptive information such as storyline summary, consumer reviews, and related articles, while non-descriptive normative information covers data such as sales ranking, release date, genre, rental or purchase cost, domestic/foreign classification, consumer rating, number of consumer ratings, film rating, and so on. In this study, we surveyed and analyzed statistically the correlation between real-time sales ranking and other comparable non-descriptive information.

A Feasibility Study on Adopting Individual Information Cognitive Processing as Criteria of Categorization on Apple iTunes Store

  • Zhang, Chao;Wan, Lili
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제27권2호
    • /
    • pp.1-28
    • /
    • 2018
  • Purpose More than 7.6 million mobile apps could be approved on both Apple iTunes Store and Google Play. For managing those existed Apps, Apple Inc. established twenty-four primary categories, as well as Google Play had thirty-three primary categories. However, all of their categorizations have appeared more and more problems in managing and classifying numerous apps, such as app miscategorized, cross-attribution problems, lack of categorization keywords index, etc. The purpose of this study focused on introducing individual information cognitive processing as the classification criteria to update the current categorization on Apple iTunes Store. Meanwhile, we tried to observe the effectiveness of the new criteria from a classification process on Apple iTunes Store. Design/Methodology/Approach A research approach with four research stages were performed and a series of mixed methods was developed to identify the feasibility of adopting individual information cognitive processing as categorization criteria. By using machine-learning techniques with Term Frequency-Inverse Document Frequency and Singular Value Decomposition, keyword lists were extracted. By using the prior research results related to car app's categorization, we developed individual information cognitive processing. Further keywords extracting process from the extracted keyword lists was performed. Findings By TF-IDF and SVD, keyword lists from more than five thousand apps were extracted. Furthermore, we developed individual information cognitive processing that included a categorization teaching process and learning process. Three top three keywords for each category were extracted. By comparing the extracted results with prior studies, the inter-rater reliability for two different methods shows significant reliable, which proved the individual information cognitive processing to be reliable as criteria of categorization on Apple iTunes Store. The updating suggestions for Apple iTunes Store were discussed in this paper and the results of this paper may be useful for app store hosts to improve the current categorizations on app stores as well as increasing the efficiency of app discovering and locating process for both app developers and users.

Global Big Data Analysis Exploring the Determinants of Application Ratings: Evidence from the Google Play Store

  • Seo, Min-Kyo;Yang, Oh-Suk;Yang, Yoon-Ho
    • Journal of Korea Trade
    • /
    • 제24권7호
    • /
    • pp.1-28
    • /
    • 2020
  • Purpose - This paper empirically investigates the predictors and main determinants of consumers' ratings of mobile applications in the Google Play Store. Using a linear and nonlinear model comparison to identify the function of users' review, in determining application rating across countries, this study estimates the direct effects of users' reviews on the application rating. In addition, extending our modelling into a sentimental analysis, this paper also aims to explore the effects of review polarity and subjectivity on the application rating, followed by an examination of the moderating effect of user reviews on the polarity-rating and subjectivity-rating relationships. Design/methodology - Our empirical model considers nonlinear association as well as linear causality between features and targets. This study employs competing theoretical frameworks - multiple regression, decision-tree and neural network models - to identify the predictors and main determinants of app ratings, using data from the Google Play Store. Using a cross-validation method, our analysis investigates the direct and moderating effects of predictors and main determinants of application ratings in a global app market. Findings - The main findings of this study can be summarized as follows: the number of user's review is positively associated with the ratings of a given app and it positively moderates the polarity-rating relationship. Applying the review polarity measured by a sentimental analysis to the modelling, it was found that the polarity is not significantly associated with the rating. This result best applies to the function of both positive and negative reviews in playing a word-of-mouth role, as well as serving as a channel for communication, leading to product innovation. Originality/value - Applying a proxy measured by binomial figures, previous studies have predominantly focused on positive and negative sentiment in examining the determinants of app ratings, assuming that they are significantly associated. Given the constraints to measurement of sentiment in current research, this paper employs sentimental analysis to measure the real integer for users' polarity and subjectivity. This paper also seeks to compare the suitability of three distinct models - linear regression, decision-tree and neural network models. Although a comparison between methodologies has long been considered important to the empirical approach, it has hitherto been underexplored in studies on the app market.

카테고리와 권한을 이용한 안드로이드 악성 앱 탐지 (The Detection of Android Malicious Apps Using Categories and Permissions)

  • 박종찬;백남균
    • 한국정보통신학회논문지
    • /
    • 제26권6호
    • /
    • pp.907-913
    • /
    • 2022
  • 전 세계 스마트폰 이용자 중 약 70%가 안드로이드 운영체제 기반 스마트폰을 사용하고 있으며 이러한 안드로이드 플랫폼을 표적으로 한 악성 앱이 지속적으로 증가하고 있다. 구글은 증가하는 안드로이드 대상 악성코드에 대응하기 위해 'Google Play Protect'를 제공하여 악성 앱이 스마트폰에 설치되는 것을 방지하고 있으나, 아직도 많은 악성 앱들이 정상 앱처럼 위장하여 구글 플레이스토어에 등록되어 선량한 일반 사용자의 스마트폰을 위협하고 있다. 하지만 일반 사용자가 악성 앱을 점검하기에는 상당한 전문성이 필요하기에 대부분 사용자는 안티바이러스 프로그램에 의존하여 악성 앱을 탐지하고 있다. 이에 본 논문에서는 앱에서 쉽게 확인이 가능한 카테고리와 권한만을 활용하여 앱의 불필요한 악성 권한을 분류하고 분류한 권한을 통해 악성 앱을 쉽게 검출할 수 있는 방법을 제안한다. 제안된 방법은 '상용 악성 앱 검출 프로그램'과 미탐율·오탐율 측면에서 비교 분석하여 성능 수준을 제시하고 있다.

재난안전통신망 앱스토어를 위한 AI 보안 방안 마련 (AI Security Plan for Public Safety Network App Store)

  • 정재은;안중현;백남균
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.458-460
    • /
    • 2021
  • 우리나라 재난안전통신망 제공 및 응용 서비스는 개발 추진, 초기 구축, 실증 및 초기 서비스 단계로 재난안전통신망 모바일 앱에 대한 보안 대응은 아직 미흡하다. 재난안전통신망(PS-LTE)에서 사용할 수 있는 단말은 개방형 안드로이드 기반 전용 단말로 다양한 모바일 악성코드에 사용될 수 있는 취약성이 잠재적으로 존재하기 때문에 미국의 FirstNet Certified 및 구글의 Google Play Protect와 비슷한 선제적 대응이 필요하다. 본 논문에서는 응용서비스 앱을 재난안전통신망 모바일 앱스토어에 등재하기 전, 악성 앱 및 정상 앱에 대해 데이터 셋을 구축하여 특징을 추출하고 가장 효과적인 AI 모델을 선정하여 정적 및 동적 분석을 수행하며, 분석 결과에 따라 악성 앱이 아닌 경우 앱 스토어에 등재하는 방안을 제안한다. 해당 방안으로 악성행위 앱 등재를 사전에 차단하는 서비스 제공이 필수가 되어 공인된 인증을 부여함으로써 재난안전통신망의 보안 사각지대를 최소화하고 인증된 앱을 재난안전 제공 및 응용 서비스 지원으로 재난상황에 대한 재난안전통신망의 안전성을 확보할 수 있다.

  • PDF