In this paper, we collect and analyze the status of mobile phone applications (hereafter apps) in the healthcare and fitness category of the Apple iTunes App Store and Google Play Store. We determine the number of apps and analyze statistical aspects such as classifications, age rating, fees, and user evaluation of the popular items. As of September 30, 2013, there were 236 popular apps available from iTunes. Google Play offered 720 apps. We discover that apps for healthcare and fitness are diverse. Apps for physical exercise have the greatest popularity. The proportions of apps that are suitable for all ages among the Google and iTunes popular apps are 55.8% and 89.4%, respectively. The user evaluation of apps in iTunes is relatively less positive. We determine that the proportion of paid apps to free apps in Google is higher than that of the apps in iTunes. We perform hypothesis tests and find statistically significant differences in age rating and perceived satisfaction between the apps of the Apple iTunes App Store and Google Play Store. However, we find no meaningful differences in the classification and price of the apps between the two app stores. We perform hypothesis tests to verify the differences in age rating and perceived satisfaction between the paid and free apps within and across the Google Play Store and iTunes App Store. There are statistically significant differences in the age rating between the paid and free apps in the Google play store, between the Google free and iTunes free apps, between the Google paid and iTunes paid apps, between the Google free and iTunes paid apps, and between the Google paid and iTunes free apps. There are statistically significant differences in the perceived satisfaction between the Google free and iTunes free apps, between the Google paid and iTunes paid apps, between the Google free and iTunes paid apps, and between the Google paid and iTunes free apps.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권11호
/
pp.3723-3737
/
2022
Google Play is one of the largest Android phone app markets and it contains both free and paid apps. It provides a variety of categories for every target user who has different needs and purposes. The customer's rate every product based on their experience of apps and based on the average rating the position of an app in these arch varies. Fraudulent behaviors emerge in those apps which incorporate search rank maltreatment and malware proliferation. To distinguish the fraudulent behavior, a novel framework is structured that finds and uses follows left behind by fraudsters, to identify both malware and applications exposed to the search rank fraud method. This strategy correlates survey exercises and remarkably joins identified review relations with semantic and behavioral signals produced from Google Play application information, to distinguish dubious applications. The proposed model accomplishes 90% precision in grouping gathered informational indexes of malware, fakes, and authentic apps. It finds many fraudulent applications that right now avoid Google Bouncers recognition technology. It also helped the discovery of fake reviews using the reviewer relationship amount of reviews which are forced as positive reviews for each reviewed Google play the android app.
전 세계 스마트폰 이용자 중 약 70%가 안드로이드 운영체제 기반 스마트폰을 사용하고 있으며 이러한 안드로이드 플랫폼을 표적으로 한 악성 앱이 지속적으로 증가하고 있다. 구글은 증가하는 안드로이드 대상 악성코드에 대응하기 위해 'Google Play Protect'를 제공하여 악성 앱이 스마트폰에 설치되는 것을 방지하고 있으나, 아직도 많은 악성 앱들이 정상 앱처럼 위장하여 구글 플레이스토어에 등록되어 선량한 일반 사용자의 스마트폰을 위협하고 있다. 하지만 일반 사용자가 악성 앱을 점검하기에는 상당한 전문성이 필요하기에 대부분 사용자는 안티바이러스 프로그램에 의존하여 악성 앱을 탐지하고 있다. 이에 본 논문에서는 앱에서 쉽게 확인이 가능한 카테고리와 권한만을 활용하여 앱의 불필요한 악성 권한을 분류하고 분류한 권한을 통해 악성 앱을 쉽게 검출할 수 있는 방법을 제안한다. 제안된 방법은 '상용 악성 앱 검출 프로그램'과 미탐율·오탐율 측면에서 비교 분석하여 성능 수준을 제시하고 있다.
Google Play에 새로운 콘텐츠들이 나오고 경쟁함으로써 앱과 게임의 크기는 지속적으로 증가하고 있다. 앱과 게임의 크기가 커질수록 Google Play 스토어를 통한 앱 설치가 줄어들고 있다. 본문은 기존 지원 모델인 APK에 대한 구조 및 한계에 대해 이야기하고 새로운 지원 모델인 AAB(Android App Bundle) 구조에 대해 이야기한다. 추가로 향후 전망을 해보고자 한다.
Umer, Muhammad;Ashraf, Imran;Mehmood, Arif;Ullah, Saleem;Choi, Gyu Sang
ETRI Journal
/
제43권1호
/
pp.95-108
/
2021
Application (app) ratings are feedback provided voluntarily by users and serve as important evaluation criteria for apps. However, these ratings can often be biased owing to insufficient or missing votes. Additionally, significant differences have been observed between numeric ratings and user reviews. This study aims to predict the numeric ratings of Google apps using machine learning classifiers. It exploits numeric app ratings provided by users as training data and returns authentic mobile app ratings by analyzing user reviews. An ensemble learning model is proposed for this purpose that considers term frequency/inverse document frequency (TF/IDF) features. Three TF/IDF features, including unigrams, bigrams, and trigrams, were used. The dataset was scraped from the Google Play store, extracting data from 14 different app categories. Biased and unbiased user ratings were discriminated using TextBlob analysis to formulate the ground truth, from which the classifier prediction accuracy was then evaluated. The results demonstrate the high potential for machine learning-based classifiers to predict authentic numeric ratings based on actual user reviews.
International Journal of Internet, Broadcasting and Communication
/
제8권4호
/
pp.11-18
/
2016
Due to open source policy, Android systems are exposed to a variety of security problems. In particular, app reuse attacks are detrimental threat to the Android system security. This is because attacker can create core malign components and quickly generate a bunch of malicious apps by reusing these components. Hence, it is very imperative to discern whether Android apps contain reused components. To meet this need, we propose an Android app reuse analysis technique based on the Sequential Hypothesis Testing. This technique quickly makes a decision with a few number of samples whether a set of Android apps is made through app reuse. We performed experimental study with 6 malicious app groups, 1 google and 1 third-party app group such that each group consists of 100 Android apps. Experimental results demonstrate that our proposed analysis technique efficiently judges Android app groups with reused components.
Purpose More than 7.6 million mobile apps could be approved on both Apple iTunes Store and Google Play. For managing those existed Apps, Apple Inc. established twenty-four primary categories, as well as Google Play had thirty-three primary categories. However, all of their categorizations have appeared more and more problems in managing and classifying numerous apps, such as app miscategorized, cross-attribution problems, lack of categorization keywords index, etc. The purpose of this study focused on introducing individual information cognitive processing as the classification criteria to update the current categorization on Apple iTunes Store. Meanwhile, we tried to observe the effectiveness of the new criteria from a classification process on Apple iTunes Store. Design/Methodology/Approach A research approach with four research stages were performed and a series of mixed methods was developed to identify the feasibility of adopting individual information cognitive processing as categorization criteria. By using machine-learning techniques with Term Frequency-Inverse Document Frequency and Singular Value Decomposition, keyword lists were extracted. By using the prior research results related to car app's categorization, we developed individual information cognitive processing. Further keywords extracting process from the extracted keyword lists was performed. Findings By TF-IDF and SVD, keyword lists from more than five thousand apps were extracted. Furthermore, we developed individual information cognitive processing that included a categorization teaching process and learning process. Three top three keywords for each category were extracted. By comparing the extracted results with prior studies, the inter-rater reliability for two different methods shows significant reliable, which proved the individual information cognitive processing to be reliable as criteria of categorization on Apple iTunes Store. The updating suggestions for Apple iTunes Store were discussed in this paper and the results of this paper may be useful for app store hosts to improve the current categorizations on app stores as well as increasing the efficiency of app discovering and locating process for both app developers and users.
스마트폰의 사용 및 다양한 앱들의 출시 등이 급격하게 증가됨에 따라 악성 앱들도 많이 증가하였고 이로 인한 피해가 속출하고 있다. 안드로이드 앱들이 등록되는 구글 마켓은 앱 등록 규정이 있음에도 불구하고 정상적인 앱들과 악성 앱들이 불가피하게 동시에 존재한다. 특히, 소셜 네트워크가 활성화됨에 따라 안드로이드 구글 마켓에서도 다양한 형태로 보이지 않게 사용자들이 소셜 정보망을 맺고 평점, 다운로드 수 및 인지도 정보 등이 참고 되어 앱 다운로드 수에 반영되고 있다. 결과, 일반 사용자들이 단순히 평점, 인기도, 인기 있는 댓글 및 인지도 높은 카테고리 앱 등만 반영하여 앱을 선택하게 되면 악성 앱 다운로드로 인해 때로는 큰 피해를 볼 수 있다. 따라서 본 연구는 실제 운용되고 있는 안드로이드 마켓에서 장기간 소셜 정보를 직접 크롤링하고 분석하여 악성 앱의 경향성을 처음으로 분석했다.
모바일 앱은 사용자의 편의를 위해 개인정보에 접근할 수 있는 권한을 자주 요청한다. 하지만 이에 따라 모바일 앱을 이용하는 동안 허용되지 않은 개인정보가 유출되는 문제가 많이 발생했다. 이러한 문제를 해결하기 위해 구글 앱스토어에 등록된 앱은 개인정보 처리방침에 사용자의 개인정보를 앱에서 어떻게 활용하는지 명시하도록 했다. 하지만 앱이 수행하는 개인정보 수집 및 처리 과정이 개인정보 처리방침에 정확히 공개되어 있는지 확인하기 어려우며, 모바일 앱 사용자가 앱이 접근할 수 있는 개인정보에 대해 알기 위해서는 개인정보 처리방침에 의존해야만 한다. 본 연구에서는 개인정보 처리방침과 모바일 앱을 분석하여 개인정보 처리방침의 신뢰성을 확인하는 시스템을 제시한다. 먼저 개인정보 처리방침의 텍스트를 추출 및 분석하여 모바일 앱이 어떤 개인정보를 이용할 수 있다고 공개하는지 확인한다. 이후 안드로이드 정적 분석을 통해 앱이 접근할 수 있는 개인정보 분류를 확인하고, 두 결과를 비교하여 개인정보 처리방침을 신뢰할 수 있는지 분석한다. 실험을 위해 구글 앱스토어에 등록된 약 13,000개 안드로이드 앱의 패키지 파일과 부가정보를 수집한 뒤 분석할 수 있는 앱을 선정하기 위해 4가지 조건에 따라 전처리를 진행했다. 선정한 앱을 대상으로 텍스트 분석과 모바일 앱 분석을 진행하고, 이를 비교하여 모바일 앱은 개인정보 처리방침에 공개한 것보다 더욱 많은 개인정보에 접근할 수 있음을 증명한다.
Cloud computing is provided on demand service via the internet, allowing users to pay for the service they actually use. Categorized as one kind of cloud computing, SaaS is computing resource and software sharing model with can be accessed via the internet. Based on virtualization technology, SaaS is expected to improve the efficiency and quality of the IT service level and performance in company. Therefore this research limited cloud services to SaaS especially focused on collaborative application service, and attempts to identify the factors which impact the performance of collaboration and intention to use. This study adopts technological factors of cloud SaaS services and factors of task characteristics to explore the determinants of collaborative performance and intention to use. An experimental study using student subjects with Google Apps provided empirical validation for our proposed model. Based on 337 data collected from respondents, the major findings are following. First, the characteristics of cloud computing services such as collaboration support, service reliability, and ease of use have positive effects on perceived usefulness of collaborative application while accessability, service reliability, and ease to use have positive effects on intention to use. Second, task interdependence has a positive effects on collaborative performance while task ambiguity factor has not. Third, perceived usefulness of collaborative application have positive effects on intention to use.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.