• Title/Summary/Keyword: Gompertz 모델

Search Result 58, Processing Time 0.024 seconds

Population of Biology of Short-necked clam (Ruditapes philippinarum: Bivalvia) in Kwangyang Bay, Southern Coast of Korea. I. Growth and Benthic Environments (광양만산 바지락(Ruditapes philippinarum: Bivalvia)의 개체군 생물학. I. 성장과 서식환경)

  • 신현출;신상호
    • The Korean Journal of Malacology
    • /
    • v.15 no.1
    • /
    • pp.21-30
    • /
    • 1999
  • This study was carried out to describe the growth of Ruditapes philippinarum on Chohwa and Toksan tidal flat in Kwangyang Bay, from June 1994 to July 1995. On the Chohwa tidal flat, the mean gran size, organic content and chlorophyll-a of the surface sediment were the range of 2.50-4.46 , 4.99-5.11%, 14.53-19.90 $\mu\textrm{g}$ cm$\^$-3/, and on the Toksan tidal flat, 0.83-1.66 , 2.22-2.34%, 6.20-6.90 $\mu\textrm{g}$ cm$\^$-3/, respectively. The shell length of R. philippinarum increased rapidly from spring to summer, and gently from summer to autumn, and ceased during winter. Fresh weight increased during spring and autumn, and decreased during summer and winter. condition factors also showed the same variations of weights. Synthesized annual growth pattern of 4 year classes in shell length fitted the von Bertalnffy growth model well. The annual growth of weight fitted the Gompertz model relatively well. The values of w, initial shell growth rate, and AGR$\sub$max/, maximum weight growth rate, on the Chohwa tidal flat were lower than those on the Toksan tidal flat. Comparing the growth patterns in the same tidal flat, growth rate was higher on the lover tidal flat than those on the higher tidal flat. In conclusion, the Chohwa tidal flat maintaining higher density showed lover growth rate, because of relatively insufficient food supply and inhabiting space.

  • PDF

Study on the Methodology of the Microbial Risk Assessment in Food (식품중 미생물 위해성평가 방법론 연구)

  • 이효민;최시내;윤은경;한지연;김창민;김길생
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.4
    • /
    • pp.319-326
    • /
    • 1999
  • Recently, it is continuously rising to concern about the health risk being induced by microorganisms in food such as Escherichia coli O157:H7 and Listeria monocytogenes. Various organizations and regulatory agencies including U.S.FPA, U.S.DA and FAO/WHO are preparing the methodology building to apply microbial quantitative risk assessment to risk-based food safety program. Microbial risks are primarily the result of single exposure and its health impacts are immediate and serious. Therefore, the methodology of risk assessment differs from that of chemical risk assessment. Microbial quantitative risk assessment consists of tow steps; hazard identification, exposure assessment, dose-response assessment and risk characterization. Hazard identification is accomplished by observing and defining the types of adverse health effects in humans associated with exposure to foodborne agents. Epidemiological evidence which links the various disease with the particular exposure route is an important component of this identification. Exposure assessment includes the quantification of microbial exposure regarding the dynamics of microbial growth in food processing, transport, packaging and specific time-temperature conditions at various points from animal production to consumption. Dose-response assessment is the process characterizing dose-response correlation between microbial exposure and disease incidence. Unlike chemical carcinogens, the dose-response assessment for microbial pathogens has not focused on animal models for extrapolation to humans. Risk characterization links the exposure assessment and dose-response assessment and involve uncertainty analysis. The methodology of microbial dose-response assessment is classified as nonthreshold and thresh-old approach. The nonthreshold model have assumption that one organism is capable of producing an infection if it arrives at an appropriate site and organism have independence. Recently, the Exponential, Beta-poission, Gompertz, and Gamma-weibull models are using as nonthreshold model. The Log-normal and Log-logistic models are using as threshold model. The threshold has the assumption that a toxicant is produce by interaction of organisms. In this study, it was reviewed detailed process including risk value using model parameter and microbial exposure dose. Also this study suggested model application methodology in field of exposure assessment using assumed food microbial data(NaCl, water activity, temperature, pH, etc.) and the commercially used Food MicroModel. We recognized that human volunteer data to the healthy man are preferred rather than epidemiological data fur obtaining exact dose-response data. But, the foreign agencies are studying the characterization of correlation between human and animal. For the comparison of differences to the population sensitivity: it must be executed domestic study such as the establishment of dose-response data to the Korean volunteer by each microbial and microbial exposure assessment in food.

  • PDF

Growth and Predictive Model of Wild-type Salmonella spp. on Temperature and Time during Cut and Package Processing in Cold Pork Meats (냉장돈육 가공공정 온도와 시간에서의 Wild-type Salmonella spp.의 성장특성 및 예측모델)

  • Song, Ju Yeon;Kim, Yong Soo;Hong, Chong Hae;Bahk, Gyung Jin
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • This study presents the influence on growth properties determined using a novel predictive growth model of wild-type Salmonella spp. KSC 101 by variations in the temperature and time during cut packaging in cold, uncooked pork meat. The experiment performed for model development included an arrangement of different temperatures ($0^{\circ}C$, $5^{\circ}C$, $10^{\circ}C$, $15^{\circ}C$, and $20^{\circ}C$) and time durations (0, 1, 2, and 3 hours) that reflect actual pork-cut and packaging processes. No growth was observed at $0^{\circ}C$ and $5^{\circ}C$, whereas some growth was observed at $10^{\circ}C$, $15^{\circ}C$, and $20^{\circ}C$, with a mean increase of only 0.34 log CFU/g. The growth observed at $20^{\circ}C$ was more robust than that observed at $15^{\circ}C$, but the difference was not statistically significant (p > 0.05). However, compared with PMP (Pathogen Modeling Program), the wild-type Salmonella spp. KSC 101 showed a more rapid growth. We used the Gompertz 4 parameter equation as the primary model, and the exponential decay formula as the secondary model. The estimated $R^2$ values were 0.99 or higher. The developed model was evaluated by comparison of the experimental and predictive values, and the values were in agreement with the ${\pm}0.5$ log CFU/g, although the RMSE (Root mean square error) value was 0.103, which indicates a slight overestimation. Therefore, we suggest that the developed predictive growth model would be useful as a tool for evaluating sanitation criteria in pork cut-packaging processes.

Development of a Predictive Growth Model of Staphylococcus aureus and Shelf-life Estimation of Cooked Mung Bean Sprouts Served in School Foodservice Operations (학교급식에서 제공되는 숙주나물의 Staphylococcus aureus 성장예측모델 개발 및 섭취유효기간 설정)

  • Park, Hyoung-Su;Kim, Min-Young;Jeong, Hyun-Suk;Park, Ki-Hwan;Ryu, Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.11
    • /
    • pp.1618-1624
    • /
    • 2009
  • This study was conducted to estimate the shelf-life of cooked mung bean sprouts contaminated with Staphylococcus aureus according to storage temperatures after cooking in school foodservice operations. A predictive growth model of S. aureus in cooked mung bean sprouts prepared using a standard recipe was developed at 4 storage temperatures (5, 15, 25, and 35${^{\circ}C}$). To determine the effect of vinegar on the shelf-life of cooked mung bean sprouts, the growth of S. aureus in sprouts prepared using vinegar and the standard recipe were compared. The $R^2$ values of the specific growth rate (SGR) and lag time (LT) determined using the Gompertz model were greater than 0.90 at all temperatures except 5${^{\circ}C}$, which confirmed that it would be appropriate to use these parameters for a secondary model. The secondary model, which indicates changes in LT and SGR values according to storage temperatures, was calculated using response surface models. The compatibility of the developed model was confirmed by calculating $R^2$, Bf, Af and MSE values as statistic parameters. The $R^2$ values of LT and SGR were 0.94 or higher, and the MSE, Bf and Af values were 0.02 and 0.002, 0.97 and 1.03, and 1.31 and 1.10, respectively, with high statistical compatibility. The growth rate of S. aureus was higher when the standard recipe was used than when vinegar was used at all temperatures. Indeed, no growth of S. aureus was observed in mung bean sprouts prepared using vinegar. Based on the model developed, cooked mung bean sprouts prepared using the standard recipe for school foodservice should be stored at 10${^{\circ}C}$ or less. Additionally, sprouts stored at 25 or 35${^{\circ}C}$ should be consumed within 6 or 12 hours after cooking. Finally, the addition of vinegar will prevent the growth of S. aureus in cooked mung bean sprouts.

Cell Disruption of Microalgae by Low-Frequency Non-Focused Ultrasound (저주파 초음파를 이용한 미세조류 파쇄)

  • Bae, Myeong-Gwon;Choi, Jun-Hyuk;Park, Jong-Rak;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • Recently, bioenergy research using microalgae, one of the most promising biofuel sources, has attracted much attention. Cell disruption, which can be classified as physical or chemical, is essential to extract functional ingredients from microalgae. In this study, we investigated the cell disruption efficiency of Chlorella sp. using low-frequency non-focused ultrasound (LFNFU). This is a continuously physical method that is superior to chemical methods with respect to environmental friendliness and low processing cost. A flat panel photobioreactor was employed to cultivate Chlorella sp. and its growth curve was fitted both with Logistic and Gompertz models. The temporal change in cell reduction by cell disruption using LFNFU was fitted with a Logistic model. The experimental conditions that were investigated were the initial concentration of microalgal cells, relative amplitude of output ultrasound waves, processing volume of microalgal cells, and initial pH value. The optimal conditions for the most efficient cell disruption were determined through the various tests.

Development of a Predictive Model Describing the Growth of Staphylococcus aureus in Ready-to-Eat Sandwiches (즉석섭취 샌드위치에서의 Staphylococcus aureus 성장예측모델 개발)

  • Park, Hae-Jung;Bae, Hyun-Joo
    • Journal of the FoodService Safety
    • /
    • v.2 no.2
    • /
    • pp.91-96
    • /
    • 2021
  • This study was performed to provide fundamental data on hygiene and quality control of ready-to-eat sandwiches. Predictive models were developed to the kinetics of Staphylococcus aureus growth in these sandwiches as a function of temperature (10, 15, 25, and 35℃). The result of the primary model that used the Gompertz equation showed that the lag phase duration (LPD) and generation time (GT) decreased and the exponential growth rate (EGR) increased with increasing storage temperature. The secondary model showed an R2 for M and B of 0.9967 and 09916, respectively. A predictive growth model of the growth degree as a function of temperature was developed. L(t)=A+Cexp(-exp(-B(t-M))) (A=Initial contamination level, C=MPD-A, B=0.473166-0.045040*Temp-0.001718*Temp*Temp, M=19.924824-0.627442*Temp-0.004493*Temp*Temp, t=time, Temp=temperature). This model showed an R2 value of 0.9288. All the models developed in this study showed a good fit.

Prediction of Growth of Escherichia coli O157 : H7 in Lettuce Treated with Alkaline Electrolyzed Water at Different Temperatures

  • Ding, Tian;Jin, Yong-Guo;Rahman, S.M.E.;Kim, Jai-Moung;Choi, Kang-Hyun;Choi, Gye-Sun;Oh, Deog-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.3
    • /
    • pp.232-237
    • /
    • 2009
  • This study was conducted to develop a model for describing the effect of storage temperature (4, 10, 15, 20, 25, 30 and $35^{\circ}C$) on the growth of Escherichia coli O157 : H7 in ready-to-eat (RTE) lettuce treated with or without (control) alkaline electrolyzed water (AIEW). The growth curves were well fitted with the Gompertz equation, which was used to determine the specific growth rate (SGR) and lag time (LT) of E. coli O157 : H7 ($R^2$ = 0.994). Results showed that the obtained SGR and LT were dependent on the storage temperature. The growth rate increased with increasing temperature from 4 to $35^{\circ}C$. The square root models were used to evaluate the effect of storage temperature on the growth of E. coli O157 : H7 in lettuce samples treated without or with AIEW. The coefficient of determination ($R^2$), adjusted determination coefficient ($R^2_{Adj}$), and mean square error (MSE) were employed to validate the established models. It showed that $R^2$ and $R^_{Adj}$ were close to 1 (> 0.93), and MSE calculated from models of untreated and treated lettuce were 0.031 and 0.025, respectively. The results demonstrated that the overall predictions of the growth of E. coli O157: H7 agreed with the observed data.

Effects of Air-flow Rate on Bio-drying of Food waste (송풍량이 음식물쓰레기 발효건조에 미치는 영향)

  • Yoo, Jung-Suk;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.65-73
    • /
    • 2018
  • This study was carried out for 20 days in a bio-drying batch reactor under the blowing conditions of 0.75, 1.00, 1.25, and $1.50L/min{\cdot}kg$ in order to optimize the operating conditions for the bio-drying of food wastes. The decomposition rate of organic matter during the bio-drying operation period was analyzed using modified Gompertz model. The maximum organic degradation (P) was 2.31, 2.52, 2.27 and 1.88 kg at air flow rates of 0.75, 1.00, 1.25 and $1.50L/min{\cdot}kg$, and the maximum organic degradation rate was 0.33, 0.45, 0.28, and 0.18 kg/day at 1.00, 1.25 and $1.50L/min{\cdot}kg$, respectively, showing excellent organic decomposition efficiency at a air flow rate of $1.00L/min{\cdot}kg$. The lag growth phase time (${\lambda}$) of the bio-drying reactor was 2.10, 1.48, 1.15, and 1.06 days at 0.75, 1.00, 1.25 and $1.50L/min{\cdot}kg$, respectively. The water removal rate in the operation of bio-drying reactor of food waste increased with the increase of air flow rate from the early stage of bio-drying to the middle stage, and the highest water removal rate was observed at the air flow rate of $1.00L/min{\cdot}kg$ at the end of bio-drying. The optimum air flow rate condition of bio-drying reactor was $1.00L/min{\cdot}kg$.

Comparative Study of Change in Salmonella Enteritidis and Salmonella Typhimurium Populations in Egg white and Yolk (난백과 난황에서 Salmonella Enteritidis 와 Salmonella Typhimurium 수 변화 비교연구)

  • Moon, Hye Jin;Lim, Jeong Gyu;Yoon, Ki Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.5
    • /
    • pp.342-348
    • /
    • 2016
  • The objective of this study was to compare the change of S. Enteritidis with S. Typhimurium populations in liquid egg products. S. Enteritidis or S. Typhimurium was inoculated into egg white and egg yolk and stored at 8, 10, 15, 25, and $35^{\circ}C$, respectively. In egg white, no growth of S. Enteritidis and S. Typhimurium was observed at 8, 10, 15, and $35^{\circ}C$, while both S. Enteritidis and S. Typhimurium in egg white stored grew more than 1 log CFU/ml after 50 hours storage at $25^{\circ}C$. In egg yolk, there was no growth of S. Enteritidis and S. Typhimurium at $8^{\circ}C$ but growth of both strains was observed at 10, 15, 25, and $35^{\circ}C$. Since growth of S. Enteritidis and S. Typhimurium was only observed in egg yolk, primary growth models for both strains were developed using modified Gompertz equation and then secondary models for lag time (LT), specific growth rate (SGR), and maximum population density (MPD) were developed as a function of temperature. At all temperatures, more rapid growth of S. Enteritidis than S. Typhimurium was observed in egg yolk, indicating the greater risk of S. Enteritidis than S. Typhimurium in egg products. In conclusion, the results indicate that temperature control less than $8^{\circ}C$ is very important to ensure safety of liquid egg products, especially liquid egg yolk.

Yolk absorption and growth of churn salmon, Oncorhynchus keta alevin (연어, Oncorhynchus keta전기자어의 난황흡수 및 초기성장)

  • ZHANG Chang Ik;SOHN Myoung Ho;SEONG Ki Baik;PARK In-Seok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.5
    • /
    • pp.539-548
    • /
    • 1995
  • The process of yolk absorption and the growth pattern of churn salmon, Oncorhynchus keta alevin were studied. Matured males and females of chum salmon were sampled from the Namdaechun River in the east coast of Korea, and then an artificial fertilization was carried out using their eggs and sperms. Fertilized eggs were incubated in controlled water temperature of $13^{\circ}C$ and samples of 40 alevins were randomly taken at just hatching and at every three days between 12 days alter hatching and yolk absorption. The means of total length and total weight of hatched alevins were respectively 1.97cm and 1.85g and the yolk absorption took about 33 days after hatching, based on the morphological measurement. Growth curves of total length, total weight and somatic weight were fitted well with the Gompertz growth model. However, the shrinking in yolk-sac length, yolk-sac weight, yolk-sac height and yolk-sac volume revealed a linear phenomenon until the absorption of yolk was completed. The relative growth of chum salmon alevin, such as the relationship between total length and total weight, or between total weight and yolk-sac weight, was also studied.

  • PDF