• Title/Summary/Keyword: Gompertz 곡선

Search Result 38, Processing Time 0.021 seconds

A Software Reliability Growth Model Based on Gompertz Growth Curve (Gompertz 성장곡선 기반 소프트웨어 신뢰성 성장 모델)

  • Park Seok-Gyu;Lee Sang-Un
    • The KIPS Transactions:PartD
    • /
    • v.11D no.7 s.96
    • /
    • pp.1451-1458
    • /
    • 2004
  • Current software reliability growth models based on Gompertz growth curve are all logarithmic type. Software reliability growth models based on logarithmic type Gompertz growth curve has difficulties in parameter estimation. Therefore this paper proposes a software reliability growth model based on the logistic type Gompertz growth curie. Its usefulness is empirically verified by analyzing the failure data sets obtained from 13 different software projects. The parameters of model are estimated by linear regression through variable transformation or Virene's method. The proposed model is compared with respect to the average relative prediction error criterion. Experimental results show that the pro-posed model performs better the models based on the logarithmic type Gompertz growth curve.

A Gompertz Model for Software Cost Estimation (Gompertz 소프트웨어 비용 추정 모델)

  • Lee, Sang-Un
    • The KIPS Transactions:PartD
    • /
    • v.15D no.2
    • /
    • pp.207-212
    • /
    • 2008
  • This paper evaluates software cost estimation models, and presents the most suitable model. First, we transformed a relevant model into variables to make in linear. Second, we evaluated model's performance considering how much suitable the cost data of the actual development software was. In the stage of model performance evaluation criteria, we used MMRE which is the relative error concept rather than the absolute error. Existing software cost estimation model follows Weibull, Gamma, and Rayleigh function. In this paper, Gompertz function model is suggested which is a kind of growth curve. Additionally, we verify the compatability of other different growth curves. As a result of evaluation of model's performance, Gompertz function was considered to be the most suitable for the cost estimation model.

Estimation of Software Project Success and Completion Rate Using Gompertz Growth Function (Gompertz 성장곡선을 이용한 소프트웨어 프로젝트의 개발 성공률과 완료율 추정)

  • Lee, Sang-Un
    • The KIPS Transactions:PartD
    • /
    • v.13D no.5 s.108
    • /
    • pp.709-716
    • /
    • 2006
  • As the software complexity increases, the development success rate decreases and failure rate increases exponentially. The failure rate related to the software size can be described by a growth function. Based on this phenomenon, this paper estimates the development success and completion rate using the Gompertz growth function. At first, we transformed a software size of numerically suggested $10^n$ into a logarithm and kept the data interval constantly. We tried to derive a functional relationship between the development success rate and the completion rate according to the change of logarithmic software size. However, we could not find a function which can represent this relationship. Therefore, we introduced the failure rate and the cancel rate which are inverse to the development success rate and completion rate, respectively. Then, we indicated the relation between development failure rate and cancel rate based on the change of software size, as a type of growth function. Finally, as we made the Gompertz growth function with the function which describes the cancel rate and the failure rate properly. We could express the actual data suitably. When you apply the growth function model that I suggested, you will be able to get the success rate and completion rate of particular site of software very accurately.

Development of Site Index Curves and Comparison with National Scale for Cryptomeria japonica in Gyeongsang-do (경상도 지역 삼나무의 지위지수 곡선 개발 및 비교 검정)

  • Park, Hee-Jung;Choi, Suk-Won;Ko, Byung-Jun;Lee, Sang-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.658-664
    • /
    • 2021
  • This study aimed to develop accurate status site index curves for C. japonica in Gyeongsang-do that reflect the regional characteristics. The development of high-growth models in Chapman-Richards, Schumacher, and Gompertz for 552 C. japonica growing in Gyeongsang-do. The Gompertz growth function is the most suitable for developing site index curves. The comparative test was analyzed using the F test at a significance level of 5% and the graph. As a result, compared with the national site index curves and site index curves under base age in Jeolla-do, the p-value was 0.05 or higher, and there was no statistically significant difference. The p-value was 0.05 or lower compared with site index curves over stand age in Jeolla-do, indicating a statistically significant difference. Therefore, it was determined that site index curves for C. japonica in Gyeongsang-do can be applied to the national site index curves and site index curves under base age in Jeolla-do, but not to site index curves over base age in Jeolla-do. Hence, based on the results of the study, it is possible to provide basic data on the forest management system for C. japonica in Gyeongsang-do and systematic and reasonable management through high field application reflecting regional characteristics.

Non-linear Regression Model Between Solar Irradiation and PV Power Generation by Using Gompertz Curve (Gompertz 곡선을 이용한 비선형 일사량-태양광 발전량 회귀 모델)

  • Kim, Boyoung;Alba, Vilanova Cortezon;Kim, Chang Ki;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Hyung-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.113-125
    • /
    • 2019
  • With the opening of the small power brokerage business market in December 2018, the small power trading market has started in Korea. Operators must submit the day-ahead estimates of power output and receive incentives based on its accuracy. Therefore, the accuracy of power generation forecasts is directly affects profits of the operators. The forecasting process for power generation can be divided into two procedure. The first is to forecast solar irradiation and the second is to transform forecasted solar irradiation into power generation. There are two methods for transformation. One is to simulate with physical model, and another is to use regression model. In this study, we found the best-fit regression model by analyzing hourly data of PV output and solar irradiation data during three years for 242 PV plants in Korea. The best model was not a linear model, but a sigmoidal model and specifically a Gompertz model. The combined linear regression and Gompertz curve was proposed because a the curve has non-zero y-intercept. As the result, R2 and RMSE between observed data and the curve was significantly reduced.

Growth Curve Characteristics of Bull and Steer of Hanwoo(Korean Cattle) (한우 거세 및 비거세우의 성장곡선 특성)

  • Kim, N.S.;Ju, J.C.;Song, M.K.;Chung, C.S.;Choi, Y.I.;Park, C.J.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.519-522
    • /
    • 2002
  • Body weight-age data from 60 bulls and 60 steer of Hanwoo in the Korean Native Cattle Improvement Center was used to determine the growth curve parameters with Gompertz equation. Estimated growth curve functions were as follows; Bul l : $W_t$ = 906.1.exp{-3.956.exp(-0.0034t)} Steer : $W_t$ = 823.1.exp{-3.301.exp(-0.0027t} Mature weight estimated with Gompertz equation of bull is higher than earlier studies. And the major factor raising differences from the other is feeding level. Relative body weights of steer to bull were rapidly decreased to 79.2% until 19.5 months of age, and then increased slowly. The ratio was 90.8% at mature state. Body weight was under-estimated for bull at birth, but over-estimated for steer, and the body weight variations of bull were larger than the steer.

Genetic Aspects of the Growth Curve Parameters in Hanwoo Cows (한우 암소의 성장곡선 모수에 대한 유전적 경향)

  • Lee, Chang-U;Choe, Jae-Gwan;Jeon, Gi-Jun;Kim, Hyeong-Cheol
    • Journal of Animal Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.29-38
    • /
    • 2006
  • The objective of this study was to estimate genetic variances of growth curve parameters in Hanwoo cows. The data used in this study were records from 1,083 Hanwoo cows raised at Hanwoo Experiment Station, National Livestock Research Institute(NLRI). First evaluation model(Model I) fit year-season of birth and age of dam as fixed effects and second model(Model II) added age at the final weight as a linear covariate to Model I. Heritability estimates of A, b and k from Gompertz model were 0.22, 0.11 and 0.07 using modelⅠ and 0.28, 0.11 and 0.12 using modelⅡ. Those from Von Bertalanffy model were 0.22, 0.11 and 0.07 using modelⅠ, 0.28, 0.11 and 0.12 using modelⅡ. Heritability estimates of A, b and k from Logistic model were 0.14, 0.07 and 0.05 using modelⅠ, 0.18, 0.07 and 0.12 using modelⅡ. Heritability estimates of A from Gompertz model were higher than those from Von Bertalanffy model or Logistic model in both model Ⅰand model Ⅱ. Heritability estimates of b from Logistic model were higher than those from Gompertz model or Von Bertalanffy model in both modelⅠand model Ⅱ. Heritability estimates of birth weight, weaning weight, 3 month weight, 6 month weight, 9 month weight, 12 month weight, 18 month weight, 24 month weight, 36 month weight were after linear age adjustment 0.27, 0.11, 0.19, 0.14, 0.16, 0.23, 0.52 and 0.32, respectively. Heritability estimates of birth weight, weaning weight, 3 month weight, 6 month weight, 9 month weight and 24 month weight fit by Gompertz model were larger than those estimated from linearly adjusted data. Heritability estimates of 12 month weight, 18 month weight and 36 month weight fit by Von Bertalanffy model were larger than those estimated from linearly adjusted data. In the multitrait analyses for parameters from Gompertz model, genetic and phenotypic correlations between A and k parameters were -0.47 and -0.67 using modelⅠand -0.56 and -0.63 using model Ⅱ. Those between the A and b parameters were 0.69 and 0.34 using modelⅠand 0.72 and 0.37 using model Ⅱ. Those between the b and k parameters were -0.26 and 0.01 using modelⅠand -0.30 and 0.01 using model Ⅱ. In the multitrait analyses for parameters from Von Bertalanffy model, genetic and phenotypic correlations between A and k parameters were -0.49 and -0.67 suing model Ⅰ and -0.57 and -0.70 using modelⅡ. Those between the A and b parameters were 0.61 and 0.33 using modelⅠ and 0.60 and 0.30 using model Ⅱ. Those between the b and k parameters were -0.20 and 0.02 using modelⅠ and 0.16 and 0.00 using modelⅡ. In the multitrait analyses for parameters from Logistic model, genetic and phenotypic correlations between A and k parameters were -0.43 and -0.67 using model Ⅰ and -0.50 and -0.63 using modelⅡ. Those between the A and b parameters were 0.47 and 0.22 using modelⅠ and 0.38 and 0.24 using modelⅡ. Those between the b and k parameters were -0.09 and 0.02 using model Ⅰ and -0.02 and 0.13 using model Ⅱ.

A Comparative Study on the Growth Performance of Korean Indigenous Chicken Pure Line by Sex and Twelve Strains (토종닭 순계 12계통과 성별에 따른 성장능력 비교 연구)

  • Kim, Kigon;Park, Byoungho;Jeon, Iksoo;Choo, Hyojun;Ham, Jinjoo;Park, Keon;Cha, Jaebeom
    • Korean Journal of Poultry Science
    • /
    • v.48 no.4
    • /
    • pp.193-206
    • /
    • 2021
  • This study aimed to identify the growth performance of Korean indigenous chicken pure-line by sex and twelve strains conserved in Poultry Research Institute, National Institute of Animal Science, Rural Development Administration. The effect of sex and strain on body weight was significantly different in every period, with males being heavier in all periods than females. In the case of biweekly weight gain, the tendency to increase rapidly from birth to six weeks old, and to decrease in the period from twelve to fourteen weeks old was common across all sex and strains. Depending on sex and strain, there were significant differences in age and the number of peaks. Regardless of sex and strain, the determination coefficient and adjusted determination coefficient showed high goodness of fit (99.1~99.9%) to growth functions. However, for each model, the goodness-of-fit had variations by sex and strains. von Betalanffy function had the best fit to growth curves in all the female strains except strain D. On the other hand, Gompertz function had the best fit for all the male strains except strain C. Logistic function showed the lowest goodness-of-fit in all sex and strains. Mature weights were in the order of von bertalanffy, Gompertz, and Logistic models, while growth ratio and maturing rate followed the order of logistic, gompertz, and von bertalanffy functions. This information could be useful for Korean indigenous chicken management and designing crossbreeding tests and breeding programs.

Estimation of Growth Curve for Evaluation of Growth Characteristics for Hanwoo cows (한우암소의 성장특성 평가를 위한 성장곡선의 추정)

  • Lee, C.W.;Choi, J.G.;Jeon, K.J.;Na, K.J.;Lee, C.;Yang, B.K.;Kim, J.B.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.509-516
    • /
    • 2003
  • Growth curves were estimated for 1083 female Korean cattle raised in Daekwanryeong branch, National Livestock Research Institute (NLRI). Comparisons were made among various growth curve models for goodness of fit for the growth of the cows. Estimated growth curve functions were $W_t=370.2e^{-2.208e^{-0.00327t}$ for Gompertz model, for von Bertalanffy model, and $W_t=341.2(1+5.652e^{-0.00524t})^{-1}$ for Logistic model. Ages at inflection estimated from Gompertz model, von Bertalanffy model and Logistic model were 242.2 days, 191.5 days, and 330.5 days respectively, body weight at inflection were 136kg, 115kg, and 170kg, and daily gain at inflection were 0.445kg, 0.451kg, and 0.446kg. The predicted weights by ages from Gompertz model, von Bertalanffy model, and Logistic model were onsistently overestimated at birth weight and underestimated at 36 month weight. The von Bertalanffy model which had a variable point of inflection fit the data best.

Estimation of Parameters for Individual Growth Curves of Cows in Bostaurus Coreanae (한우 암소의 개체별 성장곡선 모수 추정)

  • Lee, C.W.;Choi, J.G.;Jeon, G.J.;Na, K.J.;Lee, C.;Hwang, J.M.;Kim, B.W.;Kim, J.B.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.689-694
    • /
    • 2003
  • Weight records of Hanwoo cows from birth to 36 months of age collected in Daekwanryeong branch, National Livestock Research Institute(NLRI) were fitted to Gompertz, von Bertalanffy and Logistic functions. For the growth curve parameters fitted on individual records using Gompertz model, the mean estimates of mature weight(A), growth ratio(b) and growth rate(k) were 383.42 ${\pm}$ 97.29kg, 2.374 ${\pm}$ 0.340 and 0.0037 ${\pm}$ 0.0012, respectively, and mean estimates of body weight, age and daily gain rate at inflection were 141.05 ${\pm}$ 35.79kg, 255.63 ${\pm}$ 109.09 day and 0.500 ${\pm}$ 0.123kg, respectively. For von BertalanfTy model, the mean estimates of A, b and k were 410.47 ${\pm}$ 117.98kg, 0.575${\pm}$0.057 and 0.003 ${\pm}$ 0.001, and mean estimates of body weight, age and daily gain at inflection were 121.62 ${\pm}$ 34.94kg, 211.02 ${\pm}$ 105.53 and 0.504 ${\pm}$ O.l24kg. For Logistic model, the mean estimates of A, b and k were 347.64 ${\pm}$ 97.29kg, 6.73 ${\pm}$ 0.34 and 0.006 ${\pm}$ 0.0018, and mean estimates of body weight, age and daily gain at inflection were 173.82 ${\pm}$ 37.25kg, 324.47 ${\pm}$ 126.85 and 0.508 ${\pm}$ 0.131kg. Coefficients of variation for the A, b and k parameter estimates were 25.3%, 14.3% and 32.4%, respectively, for Gompertz model, 28.70/0, 9.9% and 33.3% for von Bertalanffy model, and 27.9°/0, 5.0% and 30.0% for Logistic model.