The purpose of this study was to evaluate flatness of swing plane and determine swing plane type using 3-D swing plane analysis from young elite male golf players. This study also investigate the possibility of determination of swing plane using other kinematic parameters except flatness. As results, no correlations was found between flatness and handicap. Comparison of flatness between single plane and multiple plane swing group were performed and found a significant difference. The error range of flatness, 10cm, which was used for distinguish swing plane type was effective since significant differences were found at MB, EB, and EF. These differences were typical characteristics to classify two swing styles. Other kinematic parameters such as unit vector components of shaft and displacement of shaft end point also compared per event but found no significant differences. However, the moving patterns of these parameters during a golf swing showed such characteristics of each swing plane type well that these parameters could be used to determine swing style as an indirect barometers.
A method to classify a golf swing motion into 7 sections using a Kinect sensor and a fuzzy system is proposed. The inputs to the fuzzy logic are the positions of golf club and its head, which are extracted from the information of golfer's joint position and color information obtained by a Kinect sensor. The proposed method consists of three modules: one for extracting the joint's information, another for detecting and tracking of a golf club, and the other for classifying golf swing motions. The first module extracts the hand's position among the joint information provided by a Kinect sensor. The second module detects the golf club as well as its head with the Hough line transform based on the hand's coordinate. Using a fuzzy logic as a classification engine reduces recognition errors and, consequently, improves the performance of robust classification. From the experiments of real-time video clips, the proposed method shows the reliability of classification by 85.2%.
Purpose: From the perspective of biomechanics, joint moments quantitatively show a subject's ability to perform actions. In this study, the effect of normalization in the fast and asymmetric motions of a golf swing was investigated by applying three different normalization methods to the raw joint moment. Methods: The study included 13 subjects with no previous history of musculoskeletal diseases. Golf swing analyses were performed with six infrared cameras and two force plates. The majority of the raw peak joint moments showed a significant correlation at p < 0.05. Additionally, the resulting effects after applying body weight (BW), body weight multiplied by height (BWH), and body weight multiplied by leg length (BWL) normalization methods were analyzed through correlation and regression analysis. Results: The BW, BWH, and BWL normalization methods normalized 8, 10, and 11 peak joint moments out of 18, respectively. The best method for normalizing the golf swing was found to be the BWL method, which showed significant statistical differences. Several raw peak joint moments showed no significant correlation with measured anthropometrics, which was considered to be related to the muscle coordination that occurs in the swing of skilled professional golfers. Conclusions: The results of this study show that the BWL normalization method can effectively remove differences due to physical characteristics in the golf swing analysis.
The purpose of this study was to review the relevant literature about coaching and thereupon, survey the coaching methods used for golf lesson to reinterpret them and thereby, describe in view of kinetics the swing errors committed frequently by amateur golfers and suggest more scientific golf coaching methods. For this purpose, kinetic elements were divided into accuracy and power ones and therewith, the variables affecting such elements were identified. For this study, a total of 60 amateur golfer were sampled, and their swing forms were photographed with two high-speed digital cameras, and the resultant images were analyzed to determine the errors of each form kinetically, which would be analyzed again with the program V1-5000. The kinetic elements could be identified as accuracy, power and accuracy & power. Thus, setup and trajectory were classified into accuracy elements, while differences of inter-joint angles, cocking and delayed hitting. Lastly, timing and axial movement were classified into accuracy & power elements. Three errors were identified in association with setup. The errors related with trajectory elements accounted for most (6) of the 20 errors. Three errors were determined for inter-joint angle differences, and one error was associated with cocking and delayed hitting. Lastly, one error was classified into timing error, while five errors were associated with axial movement. Finally, as a result of arranging the errors into a cross table, it was found that the errors were associated with each other between take-back and back-swing, take-back and follow-through, back-swing and back-swing top, and between back-swing and down-swing. Namely, an error would lead to other error repeatedly. So, it is more effective to identify all the errors for every form and correct them comprehensively rather than single out the errors and correct them one by one.
Proceedings of the Korean Society of Precision Engineering Conference
/
2004.10a
/
pp.1221-1224
/
2004
In this study, we developed a method classifying slice shot during golf practice using backpropagation algorithm. The 144 data based on the backpropagation model(11 inputs, 2 outputs) was used as a learning set and the model was verified based on the extra 50 data in the process to predict a slice shot in golf swing. The results showed 100% separating rate of learning set and 91.5% separating rate of verified set. The developed method can be potentially beneficial for the predicting of slice shot in an indoor golf excercise setting without applying any additional equipment.
Objective: The purpose of this study was to examine the effects of real-time visual feedback weight shift training during golf swinging on golf performance. Design: Repeated-measures crossover design. Methods: Twenty-sixth amateur golfers were enrolled and randomly divided into two groups: The golf swing training with real-time feedback on weight shift (experimental group) swing training on the Wii balance board (WBB) by viewing the center of pressure (COP) trajectory on the WBB. All participants were assigned to the experimental group and the control group. The general golf swing training group (control group) performed on the ground. The golf performance was measured using a high-speed 3-dimensional camera sensor which analyses the shot distance, ball velocity, vertical launch angle, horizontal launch angle, back spin velocity and side spin velocity. The COP trajectory was assessed during 10 practice sessions and the mean was used. The golf performance measurement was repeated three times and its mean value was used. The assessment and training were performed at 24-hour intervals. Results: After training sessions, the change in shot distance, ball velocity, and horizontal launch angle pre- and post-training were significantly different when using the driver and iron clubs in the experimental group (p<0.05). The interaction time${\times}$group and time${\times}$club were not significant for all variables. Conclusions: In this study, real-time feedback training using real-time feedback on weight shifting improves golf shot distance and accuracy, which will be effective in increasing golf performance. In addition, it can be used as an index for golf player ability.
Experiment setup was designed to observe the grip pressure and the center of gravity during golf swing. The experimental results of grip pressure and center of gravity during swing showed the constant type in the envelop of force intensity of a stable KPGA pro as a function of time.
Journal of the Korea Society of Computer and Information
/
v.19
no.12
/
pp.197-207
/
2014
In this paper, I propose an automatic extraction method of golf swing features using a practical TOF camera Kinect. I extracted 7 key swing frames and features using joints and depth information from a Kinect. I tested the proposed method on 50 swings from 10 players and showed the performace. It is meaningful that 3D swing features are extracted automatically using an inexpensive and simple system and specific numerical feature values can be used for the building of automatic swing analysis system.
The purpose of this study is developing a method to analyze and evaluate a golf swing motion using the ground reaction force (GRF) data. Proper weight shifting is essential for a successful shot in golf swing and this could be evaluated by means of the forces between the feet and ground. GRF during the swing were measured from 15 low-handicapped male golfers including professionals. Four clubs(driver, iron 3, iron 5, and iron 7) were selected to analyze the differences due to different characteristics of club. Swings of each subject were taken using a high speed video camera and GRF data were taken simultaneously by two AMTI force platforms. To simplify the GRF data, forces of the three major component of GRF(vertical, lateral, anterior-posterior force) at 10 predefined temporal events for each trial were selected and the mean of each event were calculated and evaluated. Analyzed vertical GRF (VGRF) data could be divided into two different styles, one-legged and two legged. One-legged style shows good weight transfer to the target leg and most of the previous study shows this style as a typical pattern of good players. Therefore the data from the iron 5 swing obtained from 10 one-legged style golfers are provided as criteria for the evaluation of a swing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.