• Title/Summary/Keyword: Golf ball

Search Result 105, Processing Time 0.025 seconds

Kinematical Differences of the Male Professional Golfers' 30 Yard Chip Shot and Pitch Shot Motion (남자프로골퍼의 30 야드 칩샷과 피치샷 동작의 운동학적 차이)

  • Pyun, Eun-Kyung;Park, Young-Hoon;Youm, Chang-Hong;Sun, Sheng;Seo, Kuk-Woong;Seo, Kook-Eun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.177-185
    • /
    • 2007
  • Even though there were no clear definitions of the short game and short game distance, short game capability is crucial for a good golf score. Generally, chip shot and pitch shot are regarded as two principal components of the short game. Chip shot is a short, low trajectory shot played to the green or from trouble back into play. Pitch shot is a high trajectory shot of short length. Biomechanical studies were conducted usually to analyze full swing and putting motions. The purpose of the study was to reveal the kinematical differences between professional golfers' 30 yard $53^{\circ}wedge$ chip shot and $56^{\circ}wedge$ pitch shot motions. Fifteen male professional golfers were recruited for the study. Kinematical data were collected by the 60 Hz three-dimensional motion analysis system. Statistical comparisons were made by paired t-test, ANOVA, and Duncan of the SPSS 12.0K with the $\alpha$ value of .05. Results show that both the left hand and the ball were placed left of the center of the left and right foot at address. The left hand position of the chip shot was significantly left side of that of the pitch shot. But the ball position of the pitch shot was significantly right side of that of the chip shot. All body segments aligned to the left of the target line, open, at address. Except shoulder, there were no significant pelvis, knee, and feet alignment differences between chip shot and pitch shot. These differences at address seem for the ball height control. Pitch shot swing motions(the shoulder and pelvis rotation and the club head travel distance) were significantly bigger than those of the chip shot. Club head velocity of the pitch shot was significantly faster than that of the chip shot at the moment of impact. This was for the same shot length control with different lofted clubs. Swing motion differences seem mainly caused by the same shot length control with different ball height control.

Development of a Program That Computes the Position of the Club Face Based on the Experimental Data (실험 데이터를 이용한 클럽 페이스 움직임 분석 프로그램 개발)

  • Park, Jin;Shin, Ki-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.231-237
    • /
    • 2010
  • The moving trajectory of a golf ball is mainly determined by the angles of the clubface and the trajectory of the club shaft. This paper presents a computer program for analyzing the position and angles of the club while the club moves in a circular motion. For this purpose, a mathematical algorithm was developed and implemented on the experimental data(5 m and 10 m carries) using VC++ and OpenGL. A skilled female golfer(174 cm, 65 kg, 0 handicap) was participated in data collection for the short approach shots. An iron club(Titleist 52 degree, 91.5 cm length, 450 g mass), attached with five reflective markers(12 mm), was used to collect experimental data. However, exact 3D coordinates and angles of the clubface are not directly calculated from measured data. A reverse engineering platform(Minolta Vivid910 hardware and Rapidform software) was thus employed to acquire the scanned data of the clubface. The scanned data and measured data were first aligned by applying appropriate coordinate transformations, and then exact coordinates and angles of clubface could be obtained at each position during circular motion. The program(Club Motion Analysis 1.0) exports the open, heel, loft angles of the club.

The Effects of Mowing Height, Rolling, N-fertilizing, and Season on Green Speed in Korean Golf Courses (한국의 골프 코스에서 그린 스피드에 대한 예지고, 롤링, 질소 시비량과 계절의 효과)

  • 이상재;심경구;허근영
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.4
    • /
    • pp.91-99
    • /
    • 2001
  • This study was carried out to investigate the effects of mowing height, rolling, N-fertilizing, and season on green speed(i.e., ball-roll distance) for developing and implementing a program of increasing green speed in Korean golf courses. Data were subjected to multi-regression analysis using SPSSWIN(Statistical Package for the Social Science), which collected from Yong-Pyong golf course greens selected to investigate. The results was as follows. 1) The multi-regression analysis of mowing height, rolling times, and N-fertilizer application rates on spring green speed was as follows; $Y_1$(spring green speed)=4.287+0.155X$_1$(rolling times)-0.131X$_2$(the amount of N-fertilizing)-0.251X$_3$(mowing height). 2) The multi-regression analysis of mowing height, rolling times, and N-fertilizer application rates on summer green speed was as follows; $Y_2$(summer green speed)=4.833-0.423X$_3$(mowing height)+0.146X$_1$(rolling times)-0.107X$_2$(the amount of N-fertilizing). 3) The multi-regression analysis of mowing height, rolling times, and N-fertilizer application rates on fall green speed was as follows; $Y_3$(fall green speed)=4.651-0.383X$_3$(mowing height)+0.142X$_1$(rolling times)-0.103X$_2$(the amount of N-fertilizing). 4) As mowing height was lowered by 1mm, green speed increased by 0.251~0.423m. As rolling times increased by 1(one), green speed increased by0.142~0.15m. As the amount of N-fertilizing increased by 1g/$m^2$, green speed decreased by 0.103~0.131m. The season also affected green speed. In comparison with spring green speed, summer green speed decreased by 0.145m and fall green speed decreased by 0.144m.

  • PDF

Biomechanical Analysis of Lower Limb on Stance during Golf Swing (골프 스윙 시 스탠스에 따른 하지의 역학적 분석)

  • Yoon, Se-Jin;Sul, Jeong-Dug;Woo, Byung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.532-542
    • /
    • 2021
  • The purpose of this study was to investigate the body's strategy through kinematic variables of the lower extremities and ground reaction forces to maintain the club-head speed and ball accuracy despite the three stances during the golf swing. Ten male golfers who official handicap two were participate in the experiment. All subjects performed swing after maintaining the address posture according to stance conditions(square; SS, open: OS, closed: CS). Using a 3D motion analysis system and force plateform, the results were calculated with the 7-iron full swing each stance. In result, there was no difference in center of displacement, and left and right hip and knee joint angle displacement. Left ankle joint was largely plantar-flexed in OS, and right ankle joint was largely performed in CS from the address to the downswing. From address to take-back, right foot had a large left direction and the left foot had a right direction were greater in OS than in CS. Therefore, despite various stances, maintaining the same posture at impact is thought to have a positive effect on club head speed and ball direction.

Low Temperature Suspension Polymerization of Methyl Methacrylate for the Preparation of High Molecular Weight Poly(methyl methacrylate)/Silver Nanocomposite Microspheres

  • Yeum, Jeong-Hyun;Ghim, Han-Do;Deng, Yulin
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.277-283
    • /
    • 2005
  • In order to prepare high molecular weight poly(methyl methacrylate) (PMMA)/silver nanocomposite microspheres, methyl methacrylate was suspension-polymerized in the presence of silver nanoparticles at low temperature with 2,2'-azobis(2,4-dimethylvaleronitrile) as an initiator. The rate of conversion was increased by increasing the initiator concentration. When silver nanoparticles were added, the rate of polymerization decreased slightly. High monomer conversion (about $85\%$) was obtained in spite of low polymerization temperature of $30^{\circ}C$. Under controlled conditions, PMMA/silver microspheres with various number-average degrees of polymerization (6,000-37,000) were prepared. Morphology studies revealed that except for normal suspension microspheres with a smooth surface, a golf ball-like appearance of the microspheres was observed, due to the migration and aggregation of the hydrophilic silver nanoparticles at the sublayer beneath the microsphere's surface.

Tracking Method for Moving Object Using Depth Picture (깊이 화면을 이용한 움직임 객체의 추적 방법)

  • Kwon, Soon-Kak;Kim, Heung-Jun
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.774-779
    • /
    • 2016
  • The conventional methods using color signal for tracking the movement of the object require a lot of calculation and the performance is not accurate. In this paper, we propose a method to effectively track the moving objects using the depth information from a depth camera. First, it separates the background and the objects based on the depth difference in the depth of the screen. When an object is moved, the depth value of the object becomes blurred because of the phenomenon of Motion Blur. In order to solve the Motion Blur, we observe the changes in the characteristics of the object (the area of the object, the border length, the roundness, the actual size) by its velocity. The proposed algorithm was implemented in the simulation that was applied directly to the tracking of a golf ball. We can see that the estimated value of the proposed method is accurate enough to be very close to the actual measurement.

Measurement of Golf Ball Flight based on Planar Structure Sensor (평면구조 센서를 이용한 골프 공 구질 측정)

  • Park, Geun-Tae;Bae, Ji-Eun;Kim, Jin-Wook;Kim, Hang-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.341-342
    • /
    • 2009
  • 본 논문은 가상 골프 시스템에서 골프 공의 구질을 찾기 위한 새로운 센싱시스템을 제안한다. 제안된 시스템은 2개의 수평 센싱라인과 한 개의 광원으로 구성된 간단한 구조이다. 센서 위에 드리워진 공과 클럽의 그림자 정보를 0,1의 binary 형태로 만들어 놓은 원시데이터는 PC로 보내지게 되고 PC는 원시 데이터에서 공과 클럽의 영역들을 구분한다. 구분된 각각의 그림자 영역에서 속도나 초기 움직임 방향, 각도 등이 계산된다. 그리고 계산된 특징 정보를 이용해서 골프 공의 구질을 측정하고 제안된 센싱시스템의 효율성을 보인다.

An Analysis of decision Factor on Drive Distance for University Golf Player's Object Execution Using Late Hitting Method (대학 골프선수들의 의도적 지연히팅 시 비거리 결정인자 분석)

  • So, Jea-Moo;Lim, Young-Tae;Kim, Yong-Seok;Cho, Bum-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.71-78
    • /
    • 2005
  • The purpose of this research was to conduct an analysis on the factors that determine the distance at the time of target swing based on the use of late hitting of outstanding college golfers to verify the difference between late hitting and the distance that target increases in regular swing and the distance. Then, this research conducts an analysis on the correlation between club head velocity, ball velocity, launch angle, back spin, meet ratio and distance that become kinematics variables at the time of target swing. To attain the above mentioned purpose, 25 outstanding college players with average experience and handicap of 6 years and 5, respectively, were targeted Comparative analysis on two swing that target increase in regular and the distance was conducted by used driver. When it pertained to two types of swing. analysis system comprised of an analytical software called the Science Eye of the Bridgestone and peripheries was used to define the relationship between variables of club head velocity, ball velocity, launch angle, back spin, meet ratio that become kinematics variables. As for the method of processing data pertaining to the factors that determine the distance, differences of distance by the type of swing was verified by using independent T-test that leveraged SPSS 120 statistics program. Moreover, level of correlation between variables that contribute to the increase in distance through relation of correlation, and analysis of tendencies was conducted to analyze tendency of non-distance to increase in accordance to the increase of each variable. Key results produced through this experiment are as follows: 1. Artificial late hitting for increased non-distance that targets skilled players had effect on increased the distance(p<. 05). 2 The drive distance is correlated with each measured variable that is positive correlation to ball velocity, club head velocity, meet ratio and relation of back spin and launch angle are negative correlation. ball velocity and club head velocity are very high correlated with drive distance(p<.01), back spin and distance are negative correlation(p<.01). 3. Among each measured variable increasing the club velocity is the most contribution, and ball velocity and meet ratio and the increasing launch angle and back spin is negative effect for increasing distance.

A Kinematic analysis of Golf Swing Motion (골프 스윙동작의 운동학적 분석)

  • Shin, Sung-Hyu;Ko, Seok-Kon
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.101-114
    • /
    • 2003
  • The purpose of this study was to examine the major kinematicak variance to Increase the club head velocity during the driver swing two PGA prp-golfers utilizing 3-dimensional Image analyzing linear velocity of the club-head during the impact quantiatively. To achive these purpose, two high speed camera in 120 field/s and one high-speed camera in 500 field/s were used in this study. The program made by Younghoo Kwon(1944) was used to analysis the digitalization of reference point, digitalization of joint venter, synchronization, calculation of 3-Dimensional coordinate by DLT method, and smoothing. Through this study, the conclusions are as follow. 1. During the drivel swing, in the percentile of the total time, two pro-golfer showed 0.925, 0.929 second from adress to top-swing, 0.236, 0.929 second from top-swing to impact. 2. During the driver swing, in the displacement of the center of the body, two pro-golfer showed 45.3, 45.23% from adress, 44.3, 44.24% front impact. 3. In the velocity variance, The maximum club-head velocity two pro-golfer showed 43.36, 43.24m/s respectively the down swing. The ball velocity showed 63.12, 63.06m/s. 4. In the rotational angle of the shoulder joint. two pro-golfer showed $-13.5,-13.53^{\circ}$, during the back swing respectively. Two subject adressed opening status og upper body. 5. In the rotational angle of the right knee angle showed $156.3,154.7^{\circ}$ from the adress.

Biomechanics analysis by success and failure during golf putting swing (골프 퍼팅 스윙시 성공과 실패에 따른 운동역학적 분석)

  • Choi, Sung-Jin;Park, Jong-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.279-293
    • /
    • 2002
  • In the study the subjects who 10 university golfers act, and the kinetic factors were analyzed by the ground reaction system. the conclusion are as follows. 1) In the golf putting swing, the ground reaction factors of sagital plane in aspect are showen that the left and right foot sufficient difference, in the level of p <.05. 2) In the golf putting swing, the ground reaction factors of frontal plane in aspect is showen that the left foot has no significant difference in AD BS in the level of p < .05. In success, IP, FS. It can show significant difference. In addition, the right foot is shown the success, There is significant difference. 3) In the golf putting swing, the ground reaction factors of the vertical plane in aspect are shown that the left foot has no significant difference in BS, FS in the level p < .05. In success, AD, IP. It can show significant difference. In addition, the right foot is shown the success, There is significant difference. 4) In the golf putting swing, the ground reaction factors of torque in aspect are shown that the left foot had no significant difference in BS in the level p < .05. In success, AD, IP, FS. It can show significant difference. In addition, the right foot has no significant difference in IP in the level p < .05. AD, BS, FS. There is significant difference. The summarized conclusions are as follows. The first that the power of sagital plane needs the motion which can get the good power change in the stabilized pose. The second is that the small motion can make good putting in stabilized pose. The third is that the body weight move to the direction of the ball. The fourth is that the putting which looks perfect oscillation is good motion.