• Title/Summary/Keyword: Golf Club Head

Search Result 55, Processing Time 0.025 seconds

Golf Club Fitting Using Robot Machine Data (로봇머신 데이터를 이용한 골프 클럽 피팅)

  • Park, Sung-Jin;Jun, Jai-Hong;Park, Young-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.75-82
    • /
    • 2012
  • The purpose of this study was to suggest the proper shaft and head fitting methods of the golf club to increase the flight distance of the golf ball. Rotations per minute of the golf ball(RPM), ratio of Ball speed to club head speed(T-Ratio) and launch angle right after impact(LA), which are directly related to ball flight distance, were measured using Spectra with shutter speed of 1/1000sec at the constant head speed of 95mph which was controlled by robot golf swing machine. In order to investigate the effect of club shaft to the 3 selected variables, 10 shafts were used to make ten test clubs with one controlled club head which is the most commonly used by golf players. To measure the effect of the club head to the 3 selected variables, 6 golf club heads which are most commonly used by golfers were selected to make 6 test clubs with a controlled shaft which is one of the best known by players. The shafts and the heads were identified by statistical analysis to increase or decrease the RPM, T-ratio and LA. A proper fitting method of the selected shafts and the club head was suggested to increase the ball flight distance in golf.

Comparison of Kinematic Variables of the Club Head, Golf Ball and Body Alignment according to Swing Plane during Golf Driver Swing (골프 드라이버 스윙 시 스윙 플레인에 따른 클럽 헤드 및 골프볼의 운동학적 변인과 신체 정렬 변인의 비교 분석)

  • Young-Tae, Lim;Moon-Seok, Kwon;Jae-Woo, Lee
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.4
    • /
    • pp.147-152
    • /
    • 2022
  • Objective: The purpose of this study was to analyze the effects of club head and golf ball kinematics and body alignment according to the swing plane during golf driver swing. Method: Sixteen college golfers participated in this study. Kinematic data of the club head and golf ball were collected using golf swing analysis system (Trackman Ver. 3e). The body alignment variables were collected using 8 motion capture system. An Independent samples t-test was used for comparison between the Out-to-In group and In-to-Out group, and the statistical significance level was set at .05. Results: For the club head related variables, club path and club face angle showed higher values in Out-to-In swing plane than In-to-Out swing plane. For the kinematic variables of the golf ball, the total distance showed a higher value in the In-to-Out swing plane than that of the Out-to-In swing plane. For the body alignment, the In-to-Out swing plane showed higher values than the Out-to-In swing plane for the pelvis rotation angle and trunk rotation angle. Conclusion: This study suggest that it would be more effective to use the In-to-Out swing plane for increasing the total distance during the golf driver swing.

Biomechanical Analysis of Soft Golf Swing (소프트 골프 스윙의 생체역학적 해석)

  • Kim Y.Y.;Kim S.H.;Kwon T.K.;Kim N.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.643-644
    • /
    • 2006
  • The purpose of this study is to experimentally analyze swing motion with soft golf clubs and compare with that with normal golf clubs. Soft golf is newly devised recreational sport based on golf but focus on the playability for the elderly. The subject fur the experiment performed swing motion using a normal golf club and a soft golf club in turn. The swing motion of the subjects was tracked using an opto-electric three-dimensional motion analysis system. The results were compared against those obtained with a normal golf club. The range of motion was analyzed along with top head speed for two cases. It was found that higher club head speed could be achieved with reduced range of motion at lumbar joint using soft golf club when compared against the swing using regular club. The lower range of motion fur lumbar bending means reduced risk of injury at the joint. So, it is projected that we can reduce the risk of injury with soft golf while maintaining the club head speed.

  • PDF

A Study on the Effective X-Factor (실질적인 X-Factor에 관한 고찰)

  • Chang, Jae-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.153-159
    • /
    • 2005
  • The purpose of this study was to investigate the Effective X-Factor in golf swing. The term X-Factor means the relative rotation of shoulders with respect to hips during the golf swing. To ascertain the Effective X-Factor that resulted in a high club head speed at impact six golfers' swing motions were videotaped and analyzed using three-dimensional techniques. The results can be summarized as follows. The standard deviations of the professionals' average club head speeds were higher than the amateurs'. This means that the professionals' swing skills were better than amateurs' in driving accuracy and consistency. As the club head speeds were increased gradually the X-Factors and the club head speeds had reached to the subjects' average club head speeds, but the X-Factors and the club head speeds were not increased above the subjects' average club head speeds. The X-Factor Stretch early in the down swing was existed and Professional stretched values were higher than the amateurs. In conclusion my research results suggested that the increase in Effective X-Factors had no relationship to the increase in club head speeds.

Effect of Weight Ball Throw Training on Weight Shifting of Lower Body, Head Speed of Club, and Driving Distance of Amateur Golfers

  • Choi, Woo-Jin;Kim, Tack-Hoon;Oh, Dong-Sik
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.3
    • /
    • pp.111-117
    • /
    • 2017
  • PURPOSE: To determine the effect of weight ball throw training as a preparatory exercise before golf practice for 8 weeks on back muscle strength, weight shifting of lower body, head speed of club, and driving distance of amateur golfers. METHODS: A total of 18 subjects were randomly assigned to the experimental group (n=9) and the control group (n=9), respectively. For the experimental group, Weight ball throw training was provided to the height of waist and shoulder similar to golf swing with the following schedule: 3 kg weight ball throw training from the first week to the 4th week; 5 kg weight ball throw training from the 5th week to the 8th week. Before and after 8 weeks of training, back muscle strength, weight shifting of lower body, head speed of club, and driving distance of subjects in the two groups were measured. RESULTS: The experimental group showed significant differences in rotational back extension torque, weight shifting of lower body, head speed of club, and driving distance during golf swing (p<.05). However, the control group only showed significant difference in driving distance during golf swing (p<.05). Back extension torque, weight shifting of lower body, and head speed of club showed significant differences between the two groups during golf swing (p<.05). CONCLUSION: Weight ball throw training can positively change rotational back muscle strength, weight shifting of lower body, head speed of club, and driving distance of amateur golfers. Therefore, it might be used as an effective warming up exercise for amateur golfers.

Method for Measuring of Golf Ball's Speed Using The Law of Conservation of Momentum (운동량 보존 법칙을 이용한 골프공의 속도 측정 방법)

  • Shin, Seong-Yoon;Lee, Hyun-Chang;Rhee, Yang-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.9
    • /
    • pp.71-78
    • /
    • 2013
  • In this paper, the golf club head hit the golf ball moves at a constant velocity, then move in the same direction at a constant velocity of the golf club head, the velocity of the golf ball was hitting and flying the golf ball is calculated. If velocity is different before you hit the golf ball, each of the velocity of the golf ball is calculated. The purpose of this paper is to make it easy to find out the velocity of a club's head, the mass of a golf ball, the velocity or the direction of a golf ball after impact in playing golf. The results of the experiment are represented in tables and figures. And we also propose the comparison analysis between our research and other traditional ones, the implications, and futhur studies in the future. The results of this study, unlike other studies, it was can be seen that measurements of several factors superior to the measurement of the velocity of the golf ball.

Measuring The Speed of The Golf Ball after Impact (임팩트 후 골프공의 속도 측정)

  • Shin, Seong-Yoon;Lee, Hyun-Chang;Kim, Hee-Ae;Rhee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.129-131
    • /
    • 2013
  • In this paper, a golf club head strikes the golf ball moves at a constant speed. Then the head of a golf club moves at a constant speed in the same direction. Then calculate the speed of the golf ball to hit a golf ball flying. It calculate the speed of the golf ball is different for each speed before hitting the golf ball.

  • PDF

Stress Analysis of the Soft Golf Clubs using FEM (소프트골프 클럽의 유한요소 모델 응력해석)

  • Kim Y.K.;Kim S.M.;Sim K.J.;Kwon T.K.;Kim N.G.;Lee S.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.2028-2031
    • /
    • 2005
  • This paper concerns stress distribution of the soft golf clubs using FEM. The identification of the stress distribution of the soft golf clubs used the finite element method using ABAQUS. The soft golf clubs which were designated is a new golf clubs to keep a good health for the elderly. To design the soft golf clubs, we concerns two main purpose ; First, our efforts concentrate to reduce the weight of the soft golf clubs. We considers the change of material and geometry of the golf club‘s head and shaft. Second, it is to increase the size and shape of 'sweet spot' of the soft golf club’s head face. To accomplish this purpose, we made the various type of the soft golf club's head. In this paper, we simulates putter models of the soft golf clubs. The pre-processing which generates the mesh of the model used HyperMesh with geometry data by CATIA ver 5.0 This paper compares the stress distribution of putter type which was loaded.

  • PDF

Searching of Biomechanical Determination Factor for Improving Club Head Speed during the Driver Swing in Male Golf Players (남자 골프선수의 드라이버 스윙 시 클럽 헤드 스피드 향상을 위한 운동역학적 결정요인 탐색)

  • Jae-Woo Lee;Young-Suk Kim;Jun-Sung Park
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Objective: The aim of this study was to identify the biomechanical determination factor for improving club head speed during the driver swing in male golf players. Method: Twenty-seven golf players were participated in this study. Eight motion capture cameras (250 Hz) and two force plates (2,000 Hz) were used to collect peak angular velocity and ground reaction force data. It was performed stepwise multiple linear regression analysis and alpha set at .05. Results: The peak plantar flexion angular velocity of the left ankle joint and the peak adduction angular velocity of the right shoulder joint were statistically significant. The peak plantar flexion angular velocity of the left ankle joint and the peak adduction angular velocity of the right shoulder during downswing. Conclusion: It is suggested that applying body conditioning training aimed at improving related body functions to increase maximum plantar flexion angular velocity in the left ankle joint will be effective in improving club head speed.

A Study on Golf Ball Spin Mechanism at Impact (골프 공의 충돌 시 스핀 생성 원리 연구)

  • Roh, Woo-Jin;Lee, Chong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.5 s.122
    • /
    • pp.456-463
    • /
    • 2007
  • It is important to improve the initial launch conditions of golf ball at impact between golf club and ball to get a long flight distance. The flight distance is greatly influenced by the initial launch conditions such as ball speed, launch angle and back spin rate. It is also important to analyze the mechanism of ball spin to improve the initial conditions of golf ball. Back spin rate is created by the contact time and force. Previous studies showed that the contact force is determined as the resultant force of the reaction forces normal and tangential to the club face at the contact point. The normal force causes the compression and restitution of ball, and the tangential force creates the spin. Especially, the tangential force is known to take either positive or negative values as the ball rolls and slides along the club face during impact. Although the positive and negative tangential forces are known to create and reduce the back spin rate, respectively, the mechanism of ball spin creation has not yet been discussed in detail in the literature. In this paper, the influence of the contact force between golf club and ball is investigated to analyze the mechanism of impact. For this purpose, the contact force and time at impact between golf club head and ball are computed using FEM and compared with previous results. In addition, we investigate the impact phenomenon between golf club head and ball by FEM and clarify the mechanism of ball spin creation accurately, particularly focusing on the effect of negative tangential force on ball spin rate.