• Title/Summary/Keyword: GoldSim

Search Result 203, Processing Time 0.036 seconds

Application of Roasting Pretreatment for Gold Dissolution from the Invisible Gold Concentrate and Mineralogical Interpretation of their Digested Products (비가시성 금정광의 효율적 용해를 위한 소성전처리 적용과 분해 잔유물에 대한 광물학적 해석)

  • Kim, Bong-Ju;Cho, Kang-Hee;Oh, Su-Ji;On, Hyun-Sung;Kim, Byung-Joo;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.45-54
    • /
    • 2013
  • In order to dissolve Au, Ag, and other valuable metals from gold ore concentrate, raw gold concentrate was pre-treated by roasting and salt-roasting at $750^{\circ}C$. The roasted concentrate was treated with aqua regia digestion to dissolve the valuable metals and higher amount of Au, Ag, and valuable metals were extracted from the roasted concentrates than from the raw concentrate. Higher amount of these metals were also extracted from the salt-roasted concentrate than from the roasted concentrate. The results of the gold dissolution experiments showed that the gold dissolution was most efficient when particle size, roasting temperature, and the percentage of added salt in salt roasting were about $181{\sim}127{\mu}m$, $750^{\circ}C$, and was 20.0%, respectively. The XRD analysis suggests that quartz and pyrite were not destroyed even through roasting at $750^{\circ}C$ and decomposition with aqua regia. However, through salt roasting, pyrite was completely decomposed, whereas quartz could not be destroyed through salt-roasting at $750^{\circ}C$ and aqua regia digestion. Accordingly, it was expected that the gold contained in quartz can not be dissolved through salt-roasting and treatment with aqua regia.

Research on Re-creational Experiment and Technique of Gold Powder Painting for Goryeo Gold-painted Porcelain (고려시대 금채자기의 채색기법 재현실험 연구)

  • Hwang, Hyun-Sung;Lee, Da-Hae
    • Journal of Conservation Science
    • /
    • v.27 no.4
    • /
    • pp.403-414
    • /
    • 2011
  • This study is re-creational experiment of Goryeo gold-painted decoration based on the research of the gold remaining and gold painting technique on the two pieces of Goryeo gold-painted celadon and the three pieces of Chinese gold-painted porcelain on North Song period which ones have been owned by National Museum of Korea since 2007. For the observation of glue state and color developing ability, four kinds of agglutinative agent and gold powder were mixed over the porcelain sherds, then gradually fired from $100^{\circ}C$ to $1200^{\circ}C$. Visual effect and ideal temperature were measured. Among of them, oil and glue showed the best results in glue state and color developing ability. Through those results, the entire Goryeo engraved celadon were reproduced in modern facilities. Oil and glue were gold-painted over the glaze then it was fired at the ideal temperature 700 to $800^{\circ}C$. For observation the binding condition, the gold-painting cross section was looked by the scanning electron microscope (SEM). As the result, oil and glue did not make much difference in Agglutinative agent, but gold was good, the color developing ability, however, in the case of oil, the edge of gold is curled because of its interfacial tension, and it is not dried well at room temperature so the working property is not as good as the glue. Glue more effective in terms of work efficiency, but color developing ability to fall slightly in this experiment were able to see through.

Gold Nanoparticles Coated with Gd-Chelate as a Potential CT/MRI Bimodal Contrast Agent

  • Sk Md., Nasiruzzaman;Kim, Hee-Kyung;Park, Ji-Ae;Chang, Yong-Min;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1177-1181
    • /
    • 2010
  • The synthesis and characterization of gold nanoparticles coated by Gd-chelate (GdL@Au) is described, where L is a conjugate of DTPA (DTPA = diethylenetriamine-N,N,N',N",N"-pentaacetic acid) and 4-aminothiophenol. These particles are obtained by the replacement of citrate from the gold nanoparticle surfaces with gadolinium chelate (GdL). The average size of GdL@Au is 12 nm with a loading of GdL reaching up to $1.4{\times}10^3$ per particles, and they demonstrate very high r1 relaxivity (${\sim}10^4mM^{-1}s^{-1}$) and the r1 relaxivity per [Gd] is as high as $10mM^{-1}s{-1}$. Here, we also describe the use of bimodality of this contrast agent (CA) as a highly efficient CT contrast agent based on gold nanoparticles (GNPs) that overcome the limitations of iodine based contrast agent. The MTT assay performed on this CAs reveals the cytotoxicity as low as that for Omniscan$^{(R)}$ in the concentration range required to obtain intensity enhancement in the in vivo MRI study.

Scientific Analysis of Metal in Chinese and Korean Traditional Gold Thread (중국과 한국 전통금사 금속의 과학적 분석 연구)

  • Jeong, Seon Hye;Yu, Ji A;Chung, Yong Jae;Sim, Yeon Ok
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.6
    • /
    • pp.764-771
    • /
    • 2013
  • The metal component of Chinese and Korean traditional gold thread was analyzed nondestructively using P-XRF and classified morphologically. In the nondestructive analysis of 22 Chinese and Korean artifacts, there were 10 gold threads made up of Au in China and 7 in Korea; in addition, there were 4 silver threads made up of Ag in Korea and 1 copper thread made up of Cu in China. In the morphological classification, 7 gilt paper strips were confirmed in China and Korea and 4 wrapped threads were identified in China and Korea. Zn, Sn and Fe (minor components of the threads) were detected. These components were assumed to be transferred from the metal found in burial goods.

Cellular Imaging of Gold Nanoparticles Using a Compact Soft X-Ray Microscope (연 X-선 현미경을 이용한 금 나노입자 세포영상)

  • Kwon, Young-Man;Kim, Han-Kyong;Kim, Kyong-Woo;Kim, Sun-Hee;Yin, Hong-Hua;Chon, Kwon-Su;Kang, Sung-Hoon;Park, Seong-Hoon;Juhng, Seon-Kwan;Yoon, Kwon-Ha
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.235-243
    • /
    • 2008
  • A compact soft x-ray microscope operated in the 'water window' wavelength region ($2.3{\sim}4.4nm$) was used for observing cells with nano-scale spatial resolution. To obtain cellular imaging captured with colloidal gold nanoparticles using a compact soft x-ray microscope. The colloidal gold nanoparticles showed higher contrast and lower transmission more than 7 times than that of cellular protein on the soft x-ray wavelength region. The structure and thickness of the cell membrane of the Coscinodiscus oculoides (diatome) and red blood cells were seen clearly. The gold nanoparticles within the HT1080 and MDA-MB 231 cells were seen clearly on the soft x-ray microscopy. The gold nanoparticles were aggregated within vesicles by endocytosis.

Development of Control System for Kimchi Fermentation and Storage Using Refrigerator (냉장고를 이용한 김치발효 및 저장 제어시스템의 개발)

  • Ko, Yong-Duck;Kim, Heung-Jae;Chun, Sung-Sik;Sung, Nack-Kie
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.199-203
    • /
    • 1994
  • Software for refrigerator capable of both rapid fermentation and suitable storage of Kimchi was developed and its performance was investigated. Refrigerator system consists of an insulated fermentation room, heater, damper for the control of outer cold air and two sensors for recognizing temperature of heater and fermentation room, which control temperature and time period of affecting Kimchi fermentation. Effects of fermentation at different NaCl concentration and three fermentation function keys were studied; At key I, time which was elapsed to edible ripening state, pH 4.5 and total acid 0.6%, was about $3{\sim}4$, $4{\sim}5$ and $11{\sim}12$ days, respectively. At key II, time was about $2{\sim}3$, $3{\sim}4$, and $10{\sim}11$ days, and at key III, about 2, 3 and $9{\sim}10$ days, respectively. Effect of storage at three fermentation function keys was all maintained to the level of a palatable pH range until 14 days. Sensory evaluation of Kimchi showed also significant difference in a taste.

  • PDF

Mesozoic Gold-Silver Mineralization in South Korea: Metallogenic Provinces Reestimated to the Geodynamic Setting (남한의 중생대 금-은광화작용: 지구동력학적 관점에서 재검토된 금-은광상구)

  • Choi, Seon-Gyu;Park, Sang-Joon;Kim, Sung-Won;Kim, Chang-Seong;Oh, Chang-Whan
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.567-581
    • /
    • 2006
  • The Au-Ag lode deposits in South Korea are closely associated with the Mesozoic granitoids. Namely, the Jurassic deposits formed in mesozonal environments related to deep-seated granitoids, whereas the Cretaceous ones were developed in porphyry-related environments related to subvolcanic granitoids. The time-space relationships of the Au-Ag lode deposits in South Korea are closely related to the changing plate motions during the Mesozoic. Most of the Jurassic auriferous deposits (about $165{\sim}145$ Ma) show fluid characteristics typical of an orogenic-type gold deposits, and were probably generated in a compressional to transpressional regime caused by an orthogonal to oblique convergence of the Izanagi Plate into the East Asian continental margin. On the other hand, strike-slip faults and caldera-related fractures together with subvolcanic activity are associated with major strike-slip faults reactivated by a northward (oblique) to northwestward (orthogonal) convergence, and probably have played an important role in the formation of the Cretaceous Au-Ag lode deposits (about $110{\sim}45$ Ma) under a continental arc setting. The temporal and spatial distinctions between the two typical Mesozoic deposit styles in South Korea probably reflect a different thermal episodes (i.e., late orogenic and post-orogenic) and ore-forming fluids related to different depths of emplacement of magma due to regional changes in tectonic environment.

Enhanced Electrical Conductivity of Gold Doped Graphene Films by Microwave Treatment

  • Kim, Yoo-Seok;Song, Woo-Seok;Cha, Myoung-Jun;Lee, Su-Il;Cho, Ju-Mi;Kim, Sung-Hwan;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.188-188
    • /
    • 2012
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ${\sim}60{\Omega}$/sq and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. In this study, we report a creative strategy, irradiation of microwave at room temperature under vacuum, for obtaining size-homogeneous gold nano-particle doping on graphene. The gold nano-particlization promoted by microwave irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping. These results clearly revealed that gold nanoparticle with ${\geq}30$ nm in mean size were decorated along the surface of the graphene after microwave irradiation. The fabrication high-performance transparent conducting film with optimized doping condition showed a sheet resistance of ${\geq}100{\Omega}$/sq. at ~90% transmittance. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

Size-homogeneous gold nanoparticle decorated on graphene via MeV electron beam irradiation

  • Kim, Yoo-Seok;Song, Woo-Seok;Jeon, Cheol-Ho;Kim, Sung-Hwan;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.487-487
    • /
    • 2011
  • Recently graphene has emerged as a fascinating 2D system in condensed-matter physics as well as a new material for the development of nanotechnology. The unusual electronic band structure of graphene allows it to exhibit a strong ambipolar electric field effect with high mobility. These properties lead to the possibility of its application in high-performance transparent conducting films (TCFs). Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ${\sim}60{\Omega}$/sq and ~85 % transmittance in the visible range (400?900 nm), the CVD-grown graphene electrodes have a higher/flatter transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. Here, we report an ingenious strategy, irradiation of MeV electron beam (e-beam) at room temperature under ambient condition, for obtaining size-homogeneous gold nanoparticle decorated on graphene. The nano-particlization promoted by MeV e-beam irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping, and energy dispersive X-ray spectroscopy. These results clearly revealed that gold nanoparticle with 10 ~ 15 nm in mean size were decorated along the surface of the graphene after 1.5 MeV-e-beam irradiation. A chemical transformation and charge transfer for the metal gold nanoparticle were systematically explored by X-ray photoelectron spectroscopy and Raman spectroscopy. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF