• 제목/요약/키워드: Gold catalysts

검색결과 27건 처리시간 0.026초

금, 은, 백금, 팔라듐의 재활용 현황 (Recycling Status of Gold, Silver, Platinum and Palladium)

  • 김범중;김진수;유경근
    • 한국자원공학회지
    • /
    • 제56권4호
    • /
    • pp.359-366
    • /
    • 2019
  • 본 보고는 세계에서 발생하는 스크랩으로부터 금, 은, 백금과 팔라듐의 회수 현황을 지역별 및 산업별로 정리하여 국내 도시광산산업의 원료 확보를 위한 기초 자료로 활용하고자 하였다. 스크랩으로부터 발생하는 금의 양은 지난 10년간 중국을 제외한 국가들에서 감소하는 경향을 보이며, 이는 중국이 최근 금 함유 스크랩 처리량 증가가 원인으로 생각된다. 금의 산업수요는 전자제품에서 가장 높고 전체적인 수요량은 감소하고 있다. 은의 스크랩 재활용양은 전체적으로 감소하고 있으며 광산 생산량 증가에 의해 전체 생산량은 증가하였다. 백금과 팔라듐의 스크랩으로부터의 생산량과 수요량은 모두 촉매에 기인하기 때문에 향후 전기자동차 발전 추이에 영향을 크게 받을 것으로 생각된다.

Morphology-dependent Nanocatalysis: Rod-shaped Oxides

  • Shen, Wenjie
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.130-131
    • /
    • 2013
  • Nanostructured oxides are widely used in heterogeneous catalysis where their catalytic properties are closely associated with the size and morphology at nanometer level. The effect of particle size has been well decumented in the past two decades, but the shape of the nanoparticles has rarely been concerned. Here we illustrate that the redox and acidic-basic properties of oxides are largely dependent on their shapes by taking $Co_3O_4$, $Fe_2O_3$, $CeO_2$ and $La_2O_3$ nanorods as typical examples. The catalytic activities of these rod-shaped oxides are mainly governed by the nature of the exposed crystal planes. For instance, the predominant presence of {110} planes which are rich in active $Co^{3+}$ on $Co_3O_4$ nanorods led to a much higher activity for CO oxidation than the nanoparticles that mainly exposed the {111} planes. The simultaneous exposure of iron and oxygen ions on the surface of $Fe_2O_3$ nanorods have significantly enhanced the adsorption and activation of NO and thereby promoted the efficiency of DeNOx process. Moreover, the exposed surface planes of these rod-shaped oxides mediated the reaction performance of the integrated metal-oxide catalysts. Au/$CeO_2$ catalysts exhibited outstanding stability under water-gas shift conditions owing to the strong bonding of gold particle on the $CeO_2$ nanorods where the formed gold-ceria interface was resistant towards sintering. Cu nanoparticles dispersed on $La_2O_3$ nanorods efficiently catalyzed transfer dehydrogenation of primary aliphatic alcohols based on the uniue role of the exposed {110} planes on the support. Morphology control at nanometer level allows preferential exposure of the catalytically active sites, providing a new stragegy for the design of highly efficient nanostructured catalysts.

  • PDF

Gold/Copper Bi-Metallic Catalysts by Carbothermal Method for CO2 Reduction

  • Yoon, Hee-chan;Jung, Woo-bin;Jung, Hee-Tae
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2019년도 정기학술대회 발표논문집
    • /
    • pp.83-83
    • /
    • 2019
  • Increasing the CO2 concentration in the atmosphere induce high temperature and rising sea levels. So the technology that capture and reuse of the CO2 have been recently become popular. Among other methods, CRR(CO22 reduction reaction) is typical method of CO2 reusing. Electrocatalyst can show more higher efficiencies in CRR than photocatalyst because it doesn't use nature source. Nowadays, finding high efficient electrocatalyst by controlling electronic (affected by stoichiometry) and geometric (affected by atomic arrangement) factors are very important issues. Mono-atomic electro-catalyst has limitations on controlling binding energy because each intermediate has own binding energy range. So the Multi-metallic electro-catalyst is important to stabilize intermediate at the same time. Carbon monoxide(CO) which is our target product and important feedstock of useful products. Au is known for the most high CO production metal. With copper, Not only gold/copper has advantages which is they have FCC packing for easily forming solid solution regardless of stoichiometry but also presence of adsorbed CO on Cu promotes the desorption of CO on Au because of strong repulsion. And gold/copper bi-metal catalyst can show high catalytic activity(mass activity) although it has low selectivity relatively Gold. Actually, multi-metallic catalyst structure control method is limited in the solution method which is takes a lot of time. In here, we introduce CTS(carbo thermal shock) method which is using heat to make MMNP in a few seconds for making gold-copper system. This method is very simple and efficient in terms of time(very short reaction time and using carbon substrate as a direct working electrode) and increasing reaction sites(highly dispersed and mixing alloy structures). Last one is easy to control degree of mixing and it can induce 5 or more metals in one alloy system. Gold/copper by CTS can show higher catalytic activity depending on metal ratio which is altered easily by changing simple variables. The ultimate goals are making CO2 test system by CTS which can check the selectivity depending on metal types in a very short time.

  • PDF

Direct Synthesis of H2O2 over Ti-Containing Molecular Sieves Supported Gold Catalysts: A Comparative Study for In-situ-H2O2-ODS of Fuel

  • Zhang, Han;Liu, Guangliang;Song, Haiyan;Chen, Chunxia;Han, Fuqin;Chen, Ping;Zhao, Zhixi;Hu, Shaozheng
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.3065-3072
    • /
    • 2013
  • Direct synthesis of $H_2O_2$ and in situ oxidative desulfurization of model fuel over Au/Ti-HMS and Au/TS-1 catalysts has been comparatively investigated in water or methanol. Maximum amount (82%) of active $Au^0$ species for $H_2O_2$ synthesis was obtained. Au/Ti-HMS and Au/TS-1 exhibited the contrary performances in $H_2O_2$ synthesis as $CH_3OH/H_2O$ ratio of solvent changed. $H_2O_2$ decomposition and hydrogenation in water was inhibited by the introduction of methanol. Effect of $O_2/H_2$ ratio on $H_2O_2$ concentration, $H_2$ conversion and $H_2O_2$ selectivity revealed a relationship between $H_2O_2$ generation and $H_2$ consumption. The highest dibenzothiophene removal rate (83.2%) was obtained over Au/Ti-HMS in methanol at 1.5 of $O_2/H_2$ ratio and $60^{\circ}C$. But removal of thiophene over Au/TS-1 should be performed in water without heating to obtain a high removal rate (61.3%). Meanwhile, $H_2$ conversion and oxidative desulfurization selectivity of $H_2$ were presented.

Electrocatalytic Oxidation of HCOOH on an Electrodeposited AuPt Electrode: its Possible Application in Fuel Cells

  • Uhm, Sung-Hyun;Jeon, Hong-Rae;Lee, Jae-Young
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권1호
    • /
    • pp.10-18
    • /
    • 2010
  • Controlled electrodeposition of dendritic nano-structured gold-platinum (AuPt) alloy onto an electrochemically pretreated carbon paper substrate was conducted in an attempt to improve catalyst utilization and to secure an electronic percolation network toward formic acid (FA) fuel cell application. The AuPt catalysts were obtained by potentiostatic deposition. AuPt catalysts synthesized as bimetallic alloys with 60% Au content exhibited the highest catalytic activity towards formic acid electro-oxidation. The origin of this high activity and the role of Au were evaluated, in particular, by XPS analysis. Polarization and stability measurements with 1 mg $cm^{-2}$ AuPt catalyst (only 0.4 mg $cm^{-2}$ Pt) showed 52 mW $cm^{-2}$ and sustainable performance using 3M formic acid and dry air at $40^{\circ}C$.

One-pot synthesis of gold trisoctahedra with high-index facets

  • Kim, Do Youb;Choi, Kyeong Woo;Im, Sang Hyuk;Park, O Ok;Zhong, Xiao-Lan;Li, Zhi-Yuan
    • Advances in materials Research
    • /
    • 제1권1호
    • /
    • pp.1-12
    • /
    • 2012
  • There have been many efforts on the generating metal nanocrystals enclosed by high-index facets for the use as highly active catalysts. This paper describes a facile synthesis of Au trisoctahedra with high-index facets. In brief, the Au trisoctahdra were prepared by reduction of $HAuCl_4$ in N,N-dimethylformamide (DMF) containing poly (vinyl pyrrolidone) (PVP) and trace amount of $AgNO_3$. The Ag ions in the reaction solution played a critical role in controlling the trisoctahedral shape of the final product by underpotential deposition (UPD) on the Au surfaces. The as-prepared Au trisoctahedra were single crystal and enclosed by high-index {441}, {773} and {331} facets.

콜로이달 골드 합성 및 스킨케어 화장품 응용 (Synthesis of Colloidal Gold and Application of Skin Care Cosmetics)

  • 김대섭;정승현;김인영
    • 한국응용과학기술학회지
    • /
    • 제38권5호
    • /
    • pp.1325-1334
    • /
    • 2021
  • 이 연구는 화장품에 사용가능한 촉매제를 사용하여 콜로이달 골드를 합성하는 제조법과 이를 이용한 피부 개선 효과를 가진 항노화 엠플에 응용하였다. 하이드로젠테트라클로로아우레이트테트라하이드레이트에 아스코르빅애씨드, 소듐보로하이드라이드를 환원촉매제로 사용하여 나노 콜로이드를 합성하였다. 촉매제인 아스코르빅애씨드의 함량의 질량이 증가될수록 입자가 작아지는 것을 확인하였다. 반면 소듐보로하이드라이드의 질량이 증가될수록 입자크기는 증가하는 경향을 보였다. 콜로이달 골드 반응 속도를 조절하기 위하여, 잔탄검과 하이드록시에칠셀룰로오스를 사용하여 100~500 nm의 입경분포를 가진 입자를 얻을 수 있었다. 최적의 합성조건은 18℃, 20~75 mmHg의 감압상태, 교반속도 10~50rpm, 1~4시간동안 반응하여 획득할 수 있었다. 합성된 콜로이달 골드의 외관은 진한 핑크색, pH=5.5, 비중은 1.0032, 점도는 80~310 cps로 특이한 고유 냄새를 가지고 있었다. 스킨케어 화장료의 응용으로, 안티에이징 엠플을 개발하였고, 이를 이용한 다양한 처방과 제형개발에 활용될 것으로 기대한다.