• Title/Summary/Keyword: Gold and titanium screw

Search Result 24, Processing Time 0.018 seconds

Removable implant-supported partial denture using milled bar with Locator® attachments in a cleft lip & palate patient: A clinical report (구순구개열 환자에서 Locator® 유지장치가 장착된 milled titanium bar를 이용한 가철성 임플란트 피개 국소의치의 보철수복증례)

  • Yang, Sang-Hyun;Kim, Kyoung-A;Kim, Ja-Yeong;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.3
    • /
    • pp.207-214
    • /
    • 2015
  • Due to the limitations of conventional removable partial denture prostheses to treat a cleft lip & palate patient who shows scar tissue on upper lip, excessive absorption of the maxillary residual alveolar ridge, and class III malocclusion with narrow palate and undergrowth of the maxilla, 4 implants were placed on the maxillary edentulous region and a maxillary removable implant-supported partial denture was planned using a CAD/CAM milled titanium bar. Unlike metal or gold casting technique which has shrinkage after the molding, CAD/CAM milled titanium bar is highly-precise, economical and lightweight. In practice, however, it is very hard to obtain accurate friction-fit from the milled bar and reduction in retention can occur due to repetitive insertion and removal of the denture. Various auxiliary retention systems (e.g. $ERA^{(R)}$, $CEKA^{(R)}$, magnetics, $Locator^{(R)}$ attachment), in order to deal with these problems, can be used to obtain additional retention, cost-effectiveness and ease of replacement. Out of diverse auxiliary attachments, $Locator^{(R)}$ has characteristics that are dual retentive, minimal in vertical height and convenient of attachment replacement. Drill and tapping method is simple and the replacement of the metal female part of $Locator^{(R)}$ attachment is convenient. In this case, the $Locator^{(R)}$ attachment is connected to the milled titanium bar fabricated by CAD/CAM, using the drill and tapping technique. Afterward, screw holes were formed and 3 $Locator^{(R)}$ attachments were secured with 20 Ncm holding force for additional retention. Following this procedure, satisfactory results were obtained in terms of aesthetic facial form, masticatory function and denture retention, and I hereby report this case.

Histomorphometry and stability analysis of early loaded implants with two different surface conditions in beagle dogs

  • Kim, Dong-Seok;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.1
    • /
    • pp.10-18
    • /
    • 2009
  • STATEMENT OF PROBLEM. Despite an improved bone reactions of Mg-incorporated implants in the animals, little yet has been carried out by the experimental investigations in functional loading conditions. PURPOSE. This study investigated the clinical and histologic parameters of osseointegrated Mg-incorporated implants in early loading conditions. MATERIAL AND METHODS. A total of 36 solid screw implants(diameter 3.75 mm, length 10 mm) were placed in the mandibles of 6 beagle dogs. Test groups included 18 Mg-incorporated implants. Turned titanium implants served as control. Gold crowns were inserted 4 weeks after implant placement and the dogs were immediately put on a food diet. Implants were observed for 10 weeks after loading. Radiographic assessments and stability tests were performed at the time of fixture installation, $2^{nd}$ stage surgery, 4 weeks after loading, and 10 weeks after loading. Histological observations and morphometrical measurements were also performed. RESULTS. Of 36 implants, 33 displayed no discernible mobility, corresponding to successful clinical function. There was no statistically significant difference between test implants and controls in marginal bone levels(P=.46) and RFA values. The mean BIC % in the Mg-implants was $54.5{\pm}8.4%$. The mean BIC % in the turned implant was $45.3{\pm}12.2%$. These differences between the Mg-implant and control implant were statistically significant(P=.005). CONCLUSIONS. The anodized, Mg-incorporated implant demonstrated significantly more bone-to-implant contact(BIC) in early loading conditions. CLINICAL IMPLICATIONS. The results of this study in beagle dogs suggest the possibility of achieving predictable stability of early loaded free-standing dental implants with Mg-incorporated surface.

Three-Dimensional Finite Element Analysis of Internal Connection Implant System (Gsii$^{(R)}$) According to Three Different Abutments and Prosthetic Design (국산 내부연결형 임플란트시스템(GS II$^{(R)}$)에서 지대주 연결방식에 따른 응력분석에 관한 연구)

  • Jang, Mi-Ra;Kwak, Ju-Hee;Kim, Myung-Rae;Park, Eun-Jin;Park, Ji-Marn;Kim, Sun-Jong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.179-195
    • /
    • 2010
  • In the internal connection system, the loading transfer mechanism within the inner surface of the implant and also the stress distribution occuring to the mandible can be changed according to the abutment form. Therefore it is thought to be imperative to study the difference of the stress distribution occuring at the mandible according to the abutment form. The purpose of this study was to assess the loading distributing characteristics of three different abutments for GS II$^{(R)}$ implant fixture(Osstem, Korea) under vertical and inclined loading using finite element analysis. Three finite element models were designed according to three abutments; 2-piece Transfer$^{TM}$ abutment made of pure titanium(GST), 2-piece GoldCast$^{TM}$ abutment made of gold alloy(GSG), 3-piece Convertible$^{TM}$ abutment with external connection(GSC). This study simulated loads of 100N in a vertical direction on the central pit(load 1), on the buccal cusp tip(load 2) and $30^{\circ}$ inward inclined direction on the central pit(load 3), and on the buccal cusp tip(load 4). The following results were obtained. 1. Without regard to the loading condition, greater stress was concentrated at the cortical bone contacting the upper part of the implant fixture and lower stress was taken at the cancellous bone. 2. When off-axis loading was applied, high stress concentration observed in cervical area. 3. GSG showed even stress distribution in crown, abutment and fixture. GST showed high stress concentration in fixture and abutment screw. GSC showed high stress concentration in fixture and abutment. 4. Maximum von Mises stress in the surrounding bone had no difference among three abutment type. In GS II$^{(R)}$ conical implant system, different stress distribution pattern was showed according to the abutment type and the stress-induced pattern at the supporting bone according to the abutment type had no difference among them.

Histomorphometry and Stability Analysis of Loaded Implants with two Different Surface Conditions in Beagle Dogs (하중을 가한 두 가지 표면의 임플란트에 관한 조직형태학적 분석 및 안정성 분석 (비글견을 이용한 연구))

  • Kim, Sang-Mi;Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.4
    • /
    • pp.337-349
    • /
    • 2008
  • Despite an improved bone reactions of Mg-incorporated implants in the animals, little yet has been carried out by the experimental investigations in functional loading conditions. This study investigated the clinical and histologic parameters of osseointegrated Mg-incorporated implants in delayed loading conditions. A total of 36 solid screw implants (diameter 3.75 mm, length 10mm) were placed in the mandibles of 6 beagle dogs. Test groups included 18 Mg-incorporated implants. Turned titanium Implants served as control. Gold crowns were inserted 3 months. Radiographic assessments and stabilitytests were performed at the time of fixture installation, $2^{nd}$ stage surgery, 1 and 3 months after loading. Histological observations and morphometrical measurements were also performed. Of 36 implants, 32 displayed no discernible mobility, corresponding to successful clinical function. There was no statistically significant difference between test implants and controls in marginal bone levels (p=0.413) and RFA values. The mean BIC % in the Mg-implants was $54.4{\pm}20.2%$. The mean BIC % in the turned implant was $48.9{\pm}8.0%$. These differences between the Mg-implant and control implant were not statistically significant (P=0.264). In the limitation of this study, bone-to-implant contact (BIC) and bone area of Mg-incorporated oxidized implant were similar to machine-turned implant. The stability analysis showed no significantly different ISQ values and marginal bone loss between two groups. Considering time-dependent bone responses of Mg-implant, it seems that Mg-implants enhanced bone responses in early loading conditions and osseointegrated similarly to cp Ti implants in delayed loading conditions. However, further investigations are necessary to obtain long-term bone response of the Mg-implant in human.