• Title/Summary/Keyword: Gold Plating

Search Result 77, Processing Time 0.018 seconds

Deposition behavior of cyanide-free electroless Au plating solution using thiomalic acid as complexing agent and aminoethanethiol as reducing agent and characteristics of plated Au film (티오말산을 착화제로 하고 아미노에탄티올을 환원제로 하는 비시안계 무전해 Au 도금액의 석출 거동 및 도금 특성)

  • Han, Jaeho;Kim, DongHyun
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.2
    • /
    • pp.102-119
    • /
    • 2022
  • Gold plating is used as a coating of connecter in printed circuit boards, ceramic integrated circuit packages, semiconductor devices and so on, because the film has excellent electric conductivity, solderability and chemical properties such as durability to acid and other chemicals. As increasing the demand for miniaturization of printed circuit boards and downsizing of electronic devices, several types of electroless gold plating solutions have been developed. Most of these conventional gold plating solutions contain cyanide compounds as a complexing agent. The gold film obtained from such baths usually satisfies the requirements for electronic parts mentioned above. However, cyanide bath is highly toxic and it always has some possibility to cause serious problems in working environment or other administrative aspects. The object of this investigation was to develop a cyanide-free electroless gold plating process that assures the high stability of the solution and gives the excellent solderability of the deposited film. The investigation reported herein is intended to establish plating bath composition and plating conditions for electroless gold plating, with thiomalic acid as a complexing agent. At the same time, we have investigated the solution stability against nickel ion and pull strength of solder ball. Furthermore, by examining the characteristics of the plated Au plating film, the problems of the newly developed electroless Au plating solution were improved and the applicability to various industrial fields was examined. New type electroless gold-plating bath which containing thiomalic acid as a complexing agent showing so good solution stability and film properties as cyanide bath. And this bath shows the excellent stability even if the dissolved nickel ion was added from under coated nickel film, which can be used at the neutral pH range.

Effect of addition of Tl+ and Pd2+ on the texture and hardness of the non-cyanide gold plating layer (논시안 금도금층의 조직과 경도에 미치는 Tl+ 과 Pd2+ 이온첨가의 영향)

  • Heo, Wonyoung;Son, Injoon
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.6
    • /
    • pp.460-468
    • /
    • 2022
  • Due to its high electrical conductivity, low contact resistance, good weldability and high corrosion resi-stance, gold is widely used in electronic components such as connectors and printed circuit boards (PCB). Gold ion salts currently used in gold plating are largely cyan-based salts and non-cyanic salts. The cya-nide bath can be used for both high and low hardness, but the non-cyanide bath can be used for low hardness plating. Potassium gold cyanide (KAu(CN)2) as a cyanide type and sodium gold sulfite (Na3[Au(SO)3]2) salt as a non-cyanide type are most widely used. Although the cyan bath has excellent performance in plating, potassium gold cyanide (KAu(CN)2) used in the cyan bath is classified as a poison and a toxic substance and has strong toxicity, which tends to damage the positive photoresist film and make it difficult to form a straight side-wall. There is a need to supplement this. Therefore, it is intended to supplement this with an eco-friendly process using sodium sulfite sodium salt that does not contain cyan. Therefore, the main goal is to form a gold plating layer with a controllable hardness using a non-cyanide gold plating solution. In this study, the composition of a non-cyanide gold plating solution that maintains hardness even after annealing is generated through gold-palladium alloying by adding thallium, a crystal regulator among electrolysis factors affecting the structure and hardness, and changes in plating layer structure and crystallinity before and after annealing the correlation with the hardness.

A Newly Developed Non-Cyanide Electroless Gold Plating Method Using Thiomalic Acid as a Complexing Agent and 2-Aminoethanethiol as a Reducing Agent

  • Han, Jae-Ho;Lee, Jae-Bong;Van Phuong, Nguyen;Kim, Dong-Hyun
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.89-99
    • /
    • 2022
  • A versatile method for performing non-cyanide electroless gold plating using thiomalic acid (TMA) as a complexing agent and 2-aminoethanethiol (AET) as a reducing agent was investigated. It was found that TMA was an excellent complexing agent for gold. It can be used in electroless gold plating baths at a neutral pH with a high solution stability, makes it a potential candidate to replace conventional toxic cyanide complex. It was found that one gold atomic ion could bind to two TMA molecules to form the [2TMA-Au+] complex in a solution. AET can be used as a reducing agent in electroless gold plating solutions. The highest current density was obtained at electrode rotation rate of 250 to 500 rpm based on anodic and cathodic polarization curves with the mixed potential theory. Increasing AET concentration, pH, and temperature significantly increased the anodic polarization current density and shifted the plating potential toward a more negative value. The optimal gold ion concentration to obtain the highest current density was 0.01 M. The cathodic current was higher at a lower pH and a higher temperature. The current density was inversely proportional to TMA concentration.

An investigation of characteristics of Au plating for telecommunication components (통신기자재용 금도금 특성 분석 연구)

  • 한전건;강태만
    • Journal of Surface Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.309-317
    • /
    • 1992
  • Evaluation of electroplated gold has been carried out to obtain the data base for electrical, mechanical and environmental properties for telecommunication component applications. Gold plating was performed to a various thickness of $0.1\mu\textrm{m}$ to 1.$25\mu\textrm{m}$ after Ni plating of $3\mu\textrm{m}$ on C52100 bronze. Electrical properties were evaluated by measuring contact resistance using 4-wire method under static contact and dynamic contact during wear. Reciprocating wear test was performed to study the wear behavior as well as failure of gold contacts. Environmental characteristics were evaluated by using salt spray testing and SO2 test. Hardness of soft gold film was measured to be 53KHN under 5g load. Friction coefficient was initially obtained to be 0.15 and 0.25 under 100g and 200g loads respectively, and then raised up to 0.8 with increasing reciprocating wear cycles. Static contact resistance was 2 to 3m$\Omega$ regardless of gold film thickness while drastic changes of contact resistance were occured upon stripping of the gold film during wear. The lifetime of contact wear showing stable contact resistance increased up to 6 times for $1\mu\textrm{m}$ thickness compared to that of$ 0.1\mu\textrm{m}$ thickness under 100g load. All gold plating appeared to be stable under salt atmosphere while only the gold plating over 1$\mu\textrm{m}$ was stable under SO2 atmosphere.

  • PDF

CHARACTERISTICS OF PLATED GOLD LAYER ON ANSI 304 STAINLESS STEEL ACCORDING TO THE VARIATION OF PRETREATMENTS AND ELECTROLYSIS CONDITIONS

  • Lee, Dong-hun;Lee, Jae-Bong
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.224-234
    • /
    • 1999
  • An attempt was made to characterize the relationship between pretreatment processes, electrolysis conditions and behaviors of the plated gold layer. In order to investigate the effect of pretreatment processes on plating, rest potential measurements of various pretreated stainless steels and a.c.-impedance spectroscopy tests were carried out in the strike plating solution. Characteristics of plated gold layers and adhesions between plated gold layers and stainless steel substrates were examined by scratching tests and micro-Vickers hardness tests. The result shows that the strike plating enhanced the adhesion of interface, the cathodic electro-activation pretreatment process improving both corrosion resistance and adhesion strength. The preferred orientations of plated gold layers were examined by the X-ray diffraction technique. As the current density increases, [111] preferred orientation of plated gold layers was found to become well developed.

  • PDF

GOLD WIRE BONDABILITY OF ELECTROLESS GOLD PLATING USING DISULFITEAURATE COMPLEX

  • Abe, Shinji;Watanabe, Hideto;Igarashi, Yasushi;Honma, Hideo
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.714-719
    • /
    • 1996
  • For the fabrication of the circuits, contact or terminal areas are usually coated with nickel and gold. Usually, diluted palladium solution is applied to initiate electroless nickel plating on the copper circuits. However, the trace amounts of palladium remains on the resin and it causes the extraneous deposition. We confirmed that selectivity was greatly improved by the treatment with the strong reducing agents such as SBH or DMAB. Bondability was greatly influenced by the contents of phosphorus in the deposited nickel. Stabilizers in the electroless gold plating were also influenced the bonding strength. The baths containing cupferron or potassium nickel cyanide as a stabilizer showed superior bondability. The gold deposits having strong orientation with Au(220) and Au(311) showed good bond ability.

  • PDF

A Study on Applying an Electrolytic Plating to a Screen Printing (스크린 인쇄와 전해 도금의 응용에 관한 연구)

  • 강봉근
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.2
    • /
    • pp.133-141
    • /
    • 2000
  • Enhanced the value of badge good with the gold plating of emblem, sports pictogram, mascot in 2002 Asian Game and World Cup, applying the plating and coating technique to screen printing. In addition, tourist and characteristic goods were of great value and image of visual communication displayed outside. After the screen printing in the surface of stainless steel, it obtained the plate coloring of beautiful a black glossy with a black Ru plating. At the identical surface, it did that the electrodeposition coating process in order to making a conductor state of image areas and a nonconductor state of nonimage areas. After the electrodeposition process, it removed the printing ink of image areas with solvent. A manufacturing process, it removed the printing ink of image areas with solvent. A manufacturing process completed with copper, nickel and gold plating at bared metal surface.

  • PDF

Gold Alloy Plating on Electronic Parts(II) (전자 부품상의 금도금에 관한 연구 (제 2 보))

  • 염희택
    • Journal of Surface Science and Engineering
    • /
    • v.9 no.3
    • /
    • pp.1-4
    • /
    • 1976
  • In order to get high wear-resistant gold alloy plating on electronic parts, on attempt has been made, in which Cu, Ni, and Zn EDTA salts were added in gold palting solution. The results obtained on the wear resistance are as follows: 1. The addition of 0.5g/ι or over Cu in plating solution, showed 1.5 times more wear resistance than in case of no addition. 2. The addition of 1.5g/ι or over Ni, showed 3.5 times more wear-resistance . 3. The addition of 1.5g/ι and 4.0g/ι Zn , showed 3.5 times and 6.8 times more wear resistance , respectively. 4. The addition of 1.5g/ι Ni and 1.0g/ι Zn simultaneously , showed about 10 times more wear resistance than in case of no addition.

  • PDF

전기접점 재료상에 입힌 경질금고금층의 특성연구 Properties of a Hard Gold plating Layer on Electrical Contace Materials

  • 최송천;장현구
    • Journal of Surface Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.173-182
    • /
    • 1990
  • In order to prevent the thermal and enviromenatal degradation of contact materials a nickel layer was plated as an undercoat of gold plating on the surface phosphorous bronze. The thickness of nikel and gold coating and chemical resistance of the coatings were measured at various conditions. Variation of morphology and chemical composition was studied by SEM, EDS and ESCA, respectively. Nickel layer was found to act as a thermal diffusion barrier and to retard the diffusion of copper from substrate to gold coating in the temperature $200^{\circ}C$~$400^{\circ}C$. below $200^{\circ}C$gold coated contacts showed a stable and low contanct resistance, while above $200^{\circ}C$ rapid diffusion of copper formed copper oxide on the surface layer and raised the contact resistance. With the nickel thinkness of abount 5$\mu$m as an undercoat the gold thinkness of $0.5\mu$m, showed satistactory (less than 1 m$\Omega$) contact resistance below 20$0^{\circ}C$ and corresponding gold thinkness increased to 1.0 m at $300^{\circ}C$~$400^{\circ}C$.

  • PDF

Effect of underlayer electroless Ni-P plating on deposition behavior of cyanide-free electroless Au plating (비시안 무전해 Au 도금의 석출거동에 미치는 하지층 무전해 Ni-P 도금 조건의 영향)

  • Kim, DongHyun;Han, Jaeho
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.5
    • /
    • pp.299-307
    • /
    • 2022
  • Gold plating is used as a coating of connector in printed circuit boards, ceramic integrated circuit packages, semiconductor devices and so on, because the film has excellent electric conductivity, solderability and chemical properties such as durability to acid and other chemicals. In most cases, internal connection between device and package and external terminals for connecting packaging and printed circuit board are electroless Ni-P plating followed by immersion Au plating (ENIG) to ensure connection reliability. The deposition behavior and film properties of electroless Au plating are affected by P content, grain size and mixed impurity components in the electroless Ni-P alloy film used as the underlayer plating. In this study, the correlation between electroless nickel plating used as a underlayer layer and cyanide-free electroless Au plating using thiomalic acid as a complexing agent and aminoethanethiol as a reducing agent was investigated.