• 제목/요약/키워드: Gold Nanoparticle

검색결과 144건 처리시간 0.024초

Enhancement of Efficiency for Polymerase Chain Reaction Using Nanoparticle-Coated Graphene Oxide

  • 주민영;백승훈;김은주;;박찬영;박태정
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.375.1-375.1
    • /
    • 2016
  • Polymerase chain reaction (PCR) has revolutionized genetics and become one of the most popular techniques in modern biological and medical sciences. It can be used not only as an in vitro DNA amplification method but also used in many bioassay applications. The PCR can be used to exponentially produce a large number of DNA copies from a small quantity of DNA molecules in a few hours. However, as unwanted DNA fragments are also often manufactured, the amplification efficiency of PCR is decreased. To overcome this limitation, several nanomaterials have been employed to increase the specificity of the PCR reaction. Recently, graphene has attracted a great interest for its excellent electron transfer, thermal and biocompatibility. Especially, gold nanoparticle-coated graphene oxide (GO/AuNPs) led to enhance electron and thermal transfer rate and low-charge transfer resistance. Therefore, we report the development of a demonstration for the PCR efficiency using a large-scale production of the GO and combination of gold nanoparticles. Because a thermal conductivity is an important factor for improving the PCR efficiency in different DNA polymerases and different size samples. When PCR use GO/AuNPs, the result of transmission electron microscopy and real-time quantitative PCR (qPCR) showed an enhanced PCR efficiency. We have demonstrated that GO/AuNPs would be simply outperformed for enhancing the specificity and efficiency of DNA amplification procedure.

  • PDF

양친매성 금입자 표면의 소수성/친수성 비율에 대한 온도 영향 (Effects of Temperature on the Hydrophobic to Hydrophilic Ligand Ratio on the Surface of Amphiphilic Gold Nanoparticles)

  • 이화진;김현진;김민국;장지웅;이희영
    • 공업화학
    • /
    • 제30권3호
    • /
    • pp.308-312
    • /
    • 2019
  • 양친매성 금입자는 그 표면에 소수성 및 친수성 리간드를 결합시켜 합성된다. 이러한 양친매성 입자들은 바이오, 에너지, 광학, 전자 공학 분야 등에 다양하게 활용될 수 있다. 입자 표면의 소수성/친수성 비율은 양친매성 금입자의 물리화학적 특성과 밀접한 관계가 있어 양친매성 금입자를 활용하는데 있어서 상당히 중요한 역할을 한다. 본 연구에서는 양친매성 금입자 합성 과정(리간드 치환반응)에서 온도 변화에 대한 표면의 소수성과 친수성 리간드 비율의 영향을 알아보았다. 치환 반응의 온도가 증가함에 따라서 표면의 친수성 리간드의 비율이 증가하고, 또한 더 적은 친수성 리간드의 비율에서도 양친매성 금입자가 수용액상에 개별적으로 잘 분산되는 것을 확인하였다.

pH Dependent Size and Size Distribution of Gold Nanoparticles

  • Kang, Aeyeon;Park, Dae Keun;Hyun, Sang Hwa;Yun, Wan Soo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.267.2-267.2
    • /
    • 2013
  • In the citrate reduction method of gold nanoparticle (AuNP) synthesis, pH of the reaction mixture can have a considerable impact on the size and size distribution of AuNPs. In this work, effects of pH variation upon the size and its distribution were examined systematically. As the initial pH was change from 5.5 to 10.5, it showed an optimal pH around 7.5. At this pH, both of the size and the size distribution showed their minimum values, which was verified by transmission electron microscopy and UV-vis spectroscopy. This occurrence of optimal pH was discussed with the results of in situ monitoring pH during the reaction of AuNP synthesis.

  • PDF

Conjugation of Ginsenoside Rg3 with Gold Nanoparticles

  • Park, You-Mie;Im, A-Rang;Joo, Eun-Ji;Lee, Ji-Hye;Park, Hyeung-Geun;Kang, Young-Hwa;Linhardt, Robert J.;Kim, Yeong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.286-290
    • /
    • 2011
  • Ginsenoside Rg3 was reported to have important biological activities. We demonstrate conjugation and quantification procedures of ginsenoside Rg3 to gold nanoparticles for future biological and medical applications. Ginsenoside Rg3 was conjugated to spherical gold nanoparticles using a bifunctional heptaethylene glycol linker. The sulfhydryl group of heptaethylene glycol was adsorbed onto gold nanoparticles, and carboxylic acid end of heptaethylene glycol was bonded through a hydroxyl group of Rg3 via ester bond formation. The conjugation of Rg3 was characterized with various spectroscopic techniques, high resolution-transmission electron microscopy, and using Rg3 monoclonal antibody. The Rg3- functionalized gold nanoparticles were $4.7{\pm}1.0$ nm in diameter with a surface charge of -4.12 mV. The total number of Rg3 molecules conjugated to a 3.6 mL solution of gold nanoparticle was determined to be $9.5{\times}10^{14}$ corresponding to ~6 molecules of Rg3/gold nanoparticle. These results suggest that ginsenoside Rg3 is successfully conjugated to gold nanoparticles via heptaethylene glycol linker. The quantification was performed by using Rg3 monoclonal antibody without interference of gold's intrinsic color.

Phase Transition of Confined Gold Nanoparticles: Replica Exchange Molecular Dynamics Study

  • Kim, Hyun-Sik;Li, Feng-Yin;Jang, Soon-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.929-932
    • /
    • 2012
  • The classical molecular dynamics simulation was used to study the phase transition of gold nanoparticles under confinement using Sutton-Chen (SC) potential. Metal gold nanoparticles with different number of atoms are subject to replica exchange molecular dynamics simulation for this purpose. The simulation showing the solidto-liquid melting temperature largely remains unaffected by confinement, while the confinement induces characteristic pre-melting at very low temperature depending on atom number in nanoparticles.